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1 Introduction

Many important everyday phenomena in nature appear to be unpredictable or random.
Fluctuations in the neutral winds in the atmosphere are representative examples of large-
scale phenomena. Examples on small scales are fluctuations in electric circuits, and random
movements of tiny grains of pollen suspended in liquid; so-called Brownian motions
(MacDonald, 1962). This and a number of related problems and phenomena will be discussed
in some detail in the following chapters.

Although the concept of randomness may seem intuitively clear, its actual definition is
somewhat ambiguous. Randomness is often associated with unpredictability, but the fact that
one observer is unable to predict or comprehend a certain sequence of signals or events does not
preclude the possibility that it seems perfectly transparent to another who has more a priori
information available.! As an illustration of this point, consider for instance the sequence of
numbers

1111111111111111, 10000, 121, 100, 31, 24, 22, O, 17, 16, 15, 14, 13, 12, 11, 10, ...

and predict the number at the position indicated by (0. Even though the sequence has been
ordered in some sense and does not appear random, it does not, on the other hand, seem to be
regular in any way (in particular not when we are told that the next symbol in the sequence is G,
and so are actually also all the following ones!). However, with the proper a priori information
the entire sequence is perfectly meaningful, and actually quite simple to comprehend.

A time-varying signal is deterministic, i.e. completely predictable, provided that it is infi-
nitely many times differentiable and known a priori in a small time interval. Then, by a Taylor
expansion, it can in principle be described with arbitrary accuracy to arbitrary later times.
Unpredictability is therefore here related to discontinuities either in the functional values or
in time derivatives at some order invalidating this expansion. Quite formally this is so, and it
agrees also with intuitive expectations of random functions looking ragged. In reality it is not
possible to determine all derivatives with the desired accuracy on the basis of a given time
sequence and the ideal prediction outlined here is not feasible.

For a wide class of physical systems we have to accept that information can be available
only on a certain level, even in the classical limit. Even though we assume that the forces acting
on the molecular level are exactly known, the system may nevertheless have so many degrees of
freedom that it is even in principle impossible to obtain all the relevant information on the
initial conditions that would be required in order to solve the dynamic equations for the entire
system. Thus we believe that we know and understand the forces acting between atoms and

! The literature on music, in particular, contains plenty of jokes on this observation. As a chairman once
said at a conference on signal analysis, ‘one man’s signal is another man’s noise.’
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2 Introduction

molecules; within classical mechanics it should be possible to describe the dynamics of, say, a
cubic centimeter of gas to any degree of accuracy. However, this task would require that the
initial positions of some 10'” atoms or molecules be known. We can safely assume that this is
impossible, necessitating a statistical, or probabilistic, approach to the problem.

Even for systems with relatively few degrees of freedom, a somewhat similar situation may
be encountered. In practice relevant initial conditions can be obtained only with a certain
accuracy. The description of a wide class of physically interesting problems turns out to be
extremely sensitive to the initial conditions, and the predicted temporal evolution is dramati-
cally modified by even minute changes in these conditions. The resulting dynamic evolution can
be described in statistical terms.

These few examples hint that an interpretation of statistical probabilities is that they
represent systems regarding which we have insufficient a priori knowledge. For instance it
can be argued that statistical mechanics assigns equal probabilities to all states with the
same energy irrespective of the mechanical microstate simply because we do not have, and in
practice can not have, information on these microstates. This principle of ‘insufficient knowl-
edge’ can serve as a working hypothesis. It was apparently first formulated by Thomas Bayes
(1763) stating that the absence of a priori knowledge can be expressed as a priori equal prob-
abilities of events (Lee, 1989). This approach fails, however, in many respects, regarding quan-
tum statistics in particular (Tolman, 1938, van Kampen, 1981). Mathematics can only derive
the probabilities of outcomes of experiments or trials from a priori given probability densities or
distributions. The only restrictions imposed on these probabilities are that they have to be
positive definite and normalizable (and even this condition can formally be relaxed somewhat).
There is no mathematical requirement that averages should exist, although it is sometimes hard
to imagine describing a physical process without them.

e Example: The probability density

67\

pn(x) = I’l—[n(Y) ’
x
I, being the modified Bessel function, is normalized for 0 < x < oo, i.e.,
Jo o pa(x)dx =1, for all n=1,2,3,..., but it has no average, i.c. [;° xp,(x)dx
diverges for any value of n.

In some cases symmetry arguments can help to determine the actual probability distribu-
tions, i.e. for a die we usually assume that the probability of each face coming up is %. In reality
even this simple case relies on an idealization in terms of an absolutely exact cube with rounded
corners. Even an honest die can strictly speaking never live up to this expectation, and the
assumed probability is only an approximation. For slightly more complicated situations even
our intuitive understanding of symmetry arguments is not quite straightforward, as the often-
quoted example of Bertrand (1889) so elegantly demonstrates. He considered the problem of a
straight line drawn at random to intersect a circle with unit radius, see Fig. 1.1. The question is
then this: What is the probability, P, that the chord has a length longer than +/3? The answer
can be argued in three different ways, unfortunately giving three different results!

(1) Take a fixed point on the circle and consider all lines through this point assuming
that the angle, 6, with the tangent is uniformly distributed in the interval {0; r}. All
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Introduction 3

Figure 1.1 An illustration of Bertrand’s problem with a circle with unit radius, where a
chord is drawn at random. The chord length / is defined as the distance between the two
points where the line intersects the circle.

lines cross the circle at two points except for the tangent itself, i.e. 6 = 0 and 6 = 7,

which on the other hand has a relative measure zero. In order for the chord to be

longer than /3 it is required that 7/3 < 6 < 27/3. The interval is 77/3, covering % of

the available interval of , hence the answer is P = %

(2) Consider all lines perpendicular to a fixed diameter of the circle. The chord is
longer than /3 when the point of intersection lies on the middle half of the
diameter. Consequently one finds P :% by assuming the points to be uniformly
distributed.

(3) For the chord to be longer than /3 its center must lie at a distance less than % from
the center. The area of a circle with radius % is % of the original circle. Assuming the
chord centers to be uniformly distributed over the circle, the result P =1 is

4
obtained.

The three examples are all based on the a priori assumption of uniform distributions, but
of different quantities. Bertrand’s question has an analytic answer, but only when it has been
unambiguously formulated.

There is no obvious rescue for this and similar practical problems. There is no general
method for obtaining unambiguous probability distributions for physical systems from first
principles. In practice one can construct a hypothesis on the lowest possible level of description,
follow its consequences for the statistical properties of the system, and eventually test the
validity of the hypothesis against measurable quantities. A number of examples will illustrate
this in the following chapters.

e Exercise: The following problem has little relevance for the present treatise, apart
from giving an exercise in statistical reasoning. It is hoped that it can nevertheless
give the reader some amusement before entering the more serious stuff!

The problem originates, at least in its present form, from the journal of the
Danish Engineers Society, Ingenioren. It goes as follows. Four gamblers, Colt,
Browning, Smith, and Wesson reach a disagreement concerning a game of poker.
The problem becomes so serious that it has to be settled by a gunfight. The four
gentlemen meet at sunrise and agree that they should take turns to fire one shot at a
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4 Introduction

time, to be continued until there is only one survivor. There seems after all to be
some sense of fairness among them, so they decide that Mr Colt who is the best shot
should come last as number four, since he hits every time he shoots. Mr Browning
has a hit rate of 75%, so he comes as number three, Mr Smith has a record of
hitting with 50% of his shots, so he is number two, while poor Mr Wesson, with a
record of only 25%, shoots first. What is Mr Wesson’s optimum strategy, and what
is the probability of survival for each of the four gentlemen, assuming that each
follows his optimum strategy?

Understandably, the winner decides to celebrate by throwing a big party. He has
now many friends, as winners have, and invites 111 guests. To have a party in style,
all the seats are labeled with the guests’ names. Unfortunately, the first one to arrive
does not notice, and takes a seat at random (i.e. he or she might take the correct
seat). All the others take their own seats when they arrive, provided that they are
available; otherwise they take seats at random. What is the probability that the last
guest to arrive ends up in the seat with the correct label? Does the answer depend in
any significant way on the number of seats being even or odd?
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2 Elements of statistical analysis

Assume that we have a stochastic variable defined by a range of values, each associated with a
certain probability. The variable is denoted X and the values it can assume x. The variable may
assume discrete values only, e.g. it can be the number of particles in a volume element, each
value, x;, associated with a probability P(x;). Heuristically, we might interpret the probability
of an event as the number of ‘desired’ events divided by the total number of relevant events. For
simple cases like honest dies and card games, this interpretation is quite adequate, but it is
insufficient as a general definition.

The sample space for relevant events may be discrete and finite as in Appendix A, or
discrete and infinite as in Appendix B. The variable can be continuous such as, e.g., in
Appendix C, for instance the voltage output of a noisy amplifier, with the probability of X
having a value in a narrow range x, x + dx being P(x) dx. Finally a combination of the two can
occur, i.e. a mixture of discrete and continuous states as is encountered in atomic physics. The
set of values, or states, that X can assume may be multidimensional, in which case it can
conveniently be written as a vector X. An example is the velocity components of a randomly
moving particle.

By statistical averaging we understand the process based on the assumption that, ideally,
infinitely many realizations are available. The average value of, say, X is then obtained by
ensemble averaging:

' ix 404+

00 = fim SEE TS, @

where the indexes refer to the labels of individual realizations in the ensemble. If this is done in
practice, only a finite number, N, of realizations is available, and only an estimate, i.e. an
approximation to the actual average, can be achieved in this way. In terms of the normalized
probability density P(x), the mathematical process of averaging is expressed as

(X) = / b xP(x) dx, (2.2)

—0o0

for a continuous variable or, alternatively, in terms of a sum for discrete variables. It is
evidently assumed that the probability density, P(x), is known a priori. More generally, the
average, or mean, of any quantity f(X) is defined as (f(X)) = ffooo f(x)P(x)dx. Often we find
the term expectation value E{f(X)} for (f(X)). The term ‘expectation value’ might be somewhat
misleading; assume that we have an honest die and calculate the average or expectation of the
number N of dots. Since the numbers A" = 1, 2, 3, 4, 5, and 6 are equally probable, we easily
obtain (V) = 3.5. It is, however, unwise ever to actually expect the number 3.5 to come up, for
only integer numbers can occur.
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6 Elements of statistical analysis

It may be important to note that, even though an event has zero probability, this does not
necessarily mean that the event is physically impossible. The probability of an honest die
showing 6 in every trial is zero, but there are no physical laws prohibiting this from actually
happening.’

Probabilities can be expressed in terms of a distribution function or cumulative distribution
function (Hogg and Craig, 1970), Pr(x), with the relation

X
Pr(x) = / P(x")dx'

—00
for the one-variable case. While P(x) dx denotes the probability of finding x in the small interval
{x, x + dx}, the distribution function Pr(x) gives the probability of finding x in the interval
{—o0, x}. For discrete variables the probability distribution is sometimes preferred, in order to
avoid using the §-functions (see Appendix D) which have to be introduced in the probability
density for this case. The formulation in the following will be using only probability densities.

21 One-variable probabilities

First we discuss the case in which we are dealing with probabilities of one variable, say P(x).
Often we are not really interested in all the information contained in P(x), but are content with
averages such as (X"), for some values of n. This information is more readily obtained, for
instance, from moment-generating functions.

2.1.1 Generating functions

The average of exp(wx), called the moment-generating function, is defined as (Bendat, 1958,
Hogg and Craig, 1970)

M(a) = (exp(aX)) = /00 e* P(x) dx. (2.3)

—00

In particular we find by using (2.3) the derivatives

dL’EO{): / x"e* P(x) dx.
do

—00

! It is often said that it does not make sense to discuss the probability of events that have already occurred,
and of course much can be said in justification of this statement. However, even proponents of this point
of view will probably (like the author and most readers) start wondering if the opponent in a die game
continuously gets 6 or whatever number is needed to win. Faced with an event that has already hap-
pened, it is justifiable to seek its explanation by considering the probabilities of various causes for its
occurrence. When different explanations for an event are possible, giving preference to the cause with the
highest probability is a fully acceptable procedure. Maximum-likelihood methods (Hogg and Craig,
1970) are based on this basic hypothesis, by virtue of the assumption that it is the most probable event
which is actually being observed.
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2.1 One-variable probabilities 7

The moment-generating function is evidently a function of the variable « and serves to
generate the averages, or moments, of X, i.e. (X), (X 2), etc. which are obtained by evaluating
dM(e)/da, d*M(e)/do?, etc., at o = 0. The individual terms in a Taylor expansion of M («) will
consequently contain the averages (X”) in increasing order. However, not every probability
density has an associated moment-generating function, and it is often advantageous to consider
the characteristic function defined as the Fourier transform of the probability density

CH(a) = (exp(iaX)) = / ~ € P(x) dx. (2.4)

—0o0

With rather mild restrictions on the variation of P(x) at large |x|, the moments of X are
then given by

n /1 d”
(X" = (i)'

CH@)| (2.5

a=0

the subscript indicating that the derivative is to be taken at &« = 0. For a discrete variable, the
characteristic functions

CH(a) =) P(x;)e™" (2.6)
J

can be introduced, where P(x;) is the probability of the jth event. Here, the characteristic
function is a sum of exponentials.

For the case in which a variable n takes on only integer values, a definition in terms of the
z-transform (Oppenheim and Schafer, 1975) gives the generating function

o0

r@=(Z"= Y P, (2.7)

n=—0o0o
Here n is a lattice-type random variable. We recognize I'(1/z) as the z-transform of P, with n
taking on only integer values (Papoulis, 1991). (The I'-function introduced here should not be
confused with the gamma-function which interpolates n!) On differentiating (2.7) k& times we
obtain

d"T(2)/d" = (n(n = 1) (n — k + 1)2"75),
which for z = 1 becomes (n(n — 1)---(n — k + 1)).
o Exercise: Derive the moment-generating function for a Poisson distribution.

e Exercise: Obtain the moment-generating function and the characteristic function
for the binomial distribution.

o Exercise: Derive the moment-generating function for a Gaussian distribution P(x)
= (27A)"? exp(— %x2/A) and demonstrate that (X*) = 3(X?)°.

o Exercise: Demonstrate that the characteristic function for a variable Z that is the
sum of two independent random variables, Z = X + Y, is the product of the indi-
vidual characteristic functions. Generalize this result to a sum of arbitrarily many
independent variables.

e Example: By a random vector L, we understand a vector drawn in a random
direction and possibly with length, L, chosen at random also (Feller, 1971). For
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8 Elements of statistical analysis

a vector of unit length in three dimensions, R*, the distribution of the projection,
L., on an axis is uniform over {0, 1}. The projection of the same vector on a plane
has a probability density £/+1 — ¢> for 0 < £ < 1.

It is important to note that the result depends on the dimensions of the problem.
For a vector of unit length in two dimensions, R?, the distribution of the projection,
L,, on an axis is 2/(nv'1 — £2) for 0 < £ < 1.

Consider now the sum of two independent random unit vectors in R?. The
resultant of these vectors has a length L, with a probability density 2/(7v4 — £2)
for 0 < ¢ <2. Actually, by the law of cosines, L =/2—=2cosy = [2sin (}y)l,
where y is the angle between the two vectors, and %y is by assumption uniformly
distributed in {0, 7}

2.1.2 Changes of variables

An important question concerns the change in variables; often we know « priori the probability
density for a certain event, and want to determine the probability density for something else
that depends in a deterministic way on the outcome of this event. As a simple example, we may
consider X to be a temperature and Y to be the length of a metal rod, which is varying due to
thermal expansion in some, possibly nonlinear, way. Assume that the probability density,
Py(x), of the event X is known, and that another event Y is a deterministic consequence of
X, 1ie. Y =f(X). It is then, at least in principle, straightforward to determine the probability
density Py(y). The probability that Y has a value in the range {y; y + Ay} is

PyO) = / S/ () — 1Py (x) dx 2.8)

In the case in which there is a one-to-one correspondence between X and Y, the transformation
is readily expressed as

Py(y)dy = Px(x)dx. (2.9)

In case there are problems with the sign (probabilities had better be positive numbers!) this
expression is to be interpreted as Py(y) = Py(x)|J], J being the Jacobian determinant for the
general multivariable case. The expression (2.9) can be most useful.

e Exercise: Assume that a circle with radius R is placed randomly with its center on
the x-axis, with positions uniformly distributed in the interval {0; £}. Determine the
probability density of chord lengths along the y-axis, i.e. the distribution of the
lengths of segments of the y-axis inside the circle. Let the ratio R/L be arbitrary.
Repeat the problem, now with a sphere with radius R placed randomly in the x—z
plane, with its center uniformly distributed in a square {0; £}, {0; L}.

e [Exercise: Assume that the variable X has a Gaussian distribution,
P(x) = 2no*)~ /2 exp(—%xz/oz). Consider the variable ¥ = X* and demonstrate
that its probability density is given by the chi-square probability density

L) (2.10)

1
P(y) =———= —
) o/2my xp ( 202
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2.2 Multivariable probabilities

P(y/02)

-0.5 0.5 1 1.5 2 2.5

Figure 2.1 The normalized chi-square distribution, P(y/c>), as given by (2.10).

for y >0 and P(y) = 0 otherwise, see Fig. 2.1. Demonstrate that (Y) =o¢° and
(Y?) = 3¢6”. Prove explicitly that P(y) is indeed normalized, fooo P(y)dy = 1.

e Exercise: Assume that a variable X has a Gaussian distribution,
P(x) = 2no”) " exp(— 1% /0?).
Consider another variable
Y = 2/m)"? [Xexp(—LyP) dy for X >0,
while Y = 0 for X < 0. Derive the probability density for Y.

2.2 Multivariable probabilities

The random variable can be multidimensional, as has already been mentioned, i.e. the corre-
sponding probabilities can depend on many different variables. Averages are defined by a

simple generalization of (2.2) as

(f(X1, Xa, ..o, X)) :/ f(x1, X0, oo, XN)P(xy, X0, oo Xy) dXp dXy .. dxy, (2.11)

where P(x|, x,, ..., xy) is the joint probability density for the variables x, x5, ..., Xy.

For statistically independent variables, their joint probability density is the product of their

individual probability densities, e.g.

P(x1, X3,...,X,) = P(x))P(x;) ... P(xy).

Pairwise independence does not ensure absulute independence; assume for instance P(xy,
X5) = P(x;)P(x;) and P(x,, x3) = P(x,)P(x3), but this does not mean that x; and x; are inde-

pendent, i.e. P(x;, x3) # P(x;)P(x3) in general. The proof is trivial.

Moment-generating functions and characteristic functions can be defined for multivariate
distributions as well. For instance, for a bivariate probability density, P(x;, x,), we have

CH(a, &) = (exp(ia X + i£EX>))

00
= / elot.\‘]+1§xz P(Xl s Xz) dxl dX2.
—00

Averages or moments are then given by

2.12)
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10 Elements of statistical analysis

n—+m

(XT3 = (=)

do A" CH(w, &) a:E:O. (2.13)
A probability can be conditional, with P(x|y) giving the probability for the event x, given with
certainty the event y. Then, P(x) = ffooo P(x|y)dy for a continuous variable, or a corresponding
sum for a discrete variable. By Bayes’ rule we have
P(x,y)

P(y) '

where P(x, y) is the joint probability for x and y. Bayes’ rule has self-evident generalizations to

P(x]y) =

(2.14)

multivariable probabilities. It is often easier to predict or argue expressions for conditional
probabilities than it is for their unconditional counterparts. The inverted version of (2.14)
can then sometimes be used to obtain the full joint probability.

e Examples: A harmonic oscillation t;cos(f + 7o) with a random phase 7, and a
random amplitude t; represents a sample function with two parameters. A function
that alternates between +1 and —1 at N random times t =7, withn=1,2,..., N
represents a sample function with N parameters.

2.2.1 Correlation

The covariance of two random variables X and Y can be defined as
Cov = ((X — (X)(Y = (Y)))
= (XY) — (X)(Y). (2.15)

The correlation coefficient for the relationship between two random variables X and Y can be
defined as

c= (XY - (2.16)

JIr = ooy — )
For the case X = Y we have C = 1, identically. If, on the other hand, X and Y are independent
variables, we readily find that C =0. For complex variables, we define Cov = (XY™)
—(X){Y™), where the asterisk denotes the complex conjugate.

2.3 Stochastic processes

Consider a measurable quantity Y (¢) that is a function of some variable 7. Let Y, (¢) denote an
ensemble of such functions of 7, labeled by a random parameter x with a given distribution,
P(x). When ¢ stands for time it is customary to call Y (¢) a random or stochastic process. A
sample function or a realization of the process is obtained for one particular value of x. An
ensemble of such sample functions thus constitutes a stochastic process. The averaging is
understood as an ensemble averaging in the sense indicated in (2.1).

e Examples: A particularly simple example of a stochastic process is one in which
each sample function is for all times a constant x that varies over the ensemble. A
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