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1 An introduction to differential
geometry in econometrics

Paul Marriott and Mark Salmon

1 Introduction

In this introductory chapter we seek to cover suf®cient differential geo-

metry in order to understand its application to econometrics. It is not
intended to be a comprehensive review either of differential geometric

theory, or of all the applications that geometry has found in statistics.

Rather it is aimed as a rapid tutorial covering the material needed in the

rest of this volume and the general literature. The full abstract power of a

modern geometric treatment is not always necessary and such a develop-

ment can often hide in its abstract constructions as much as it illuminates.

In section 2 we show how econometric models can take the form of

geometrical objects known as manifolds, in particular concentrating on

classes of models that are full or curved exponential families.

This development of the underlying mathematical structure leads into

section 3, where the tangent space is introduced. It is very helpful to be

able to view the tangent space in a number of different but mathemati-

cally equivalent ways, and we exploit this throughout the chapter.

Section 4 introduces the idea of a metric and more general tensors

illustrated with statistically based examples. Section 5 considers the

most important tool that a differential geometric approach offers: the

af®ne connection. We look at applications of this idea to asymptotic

analysis, the relationship between geometry and information theory

and the problem of the choice of parameterisation. Section 6 introduces

key mathematical theorems involving statistical manifolds, duality, pro-

jection and ®nally the statistical application of the classic geometric

theorem of Pythagoras. The last two sections look at direct applications

of this geometric framework, in particular at the problem of inference in

curved families and at the issue of information loss and recovery.

Note that, although this chapter aims to give a reasonably precise

mathematical development of the required theory, an alternative and
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perhaps more intuitive approach can be found in the chapter by
Critchley, Marriott and Salmon in this volume. For a more exhaustive
and detailed review of current geometrical statistical theory see Kass and
Vos (1997) or, from a more purely mathematical background, see Murray
and Rice (1993).

2 Parametric families and geometry

In this section we look at the most basic relationship between parametric
families of distribution functions and geometry. We begin by ®rst intro-
ducing the statistical examples to which the geometric theory most natu-
rally applies: the class of full and curved exponential families. Examples
are given to show how these families include a broad range of econo-
metric models. Families outside this class are considered in section 2.3.

Section 2.4 then provides the necessary geometrical theory that de®nes
a manifold and shows how one manifold can be de®ned as a curved
subfamily of another. It is shown how this construction gives a very
natural framework in which we can describe clearly the geometrical rela-
tionship between full and curved exponential families. It further gives the
foundations on which a fully geometrical theory of statistical inference
can be built.

It is important at the outset to make clear one notational issue: we shall
follow throughout the standard geometric practice of denoting compo-
nents of a set of parameters by an upper index in contrast to standard
econometric notation. In other words, if � 2 Rr is an r-dimensional para-
meter vector, then we write it in component terms as

� � �1; �2; . . . ; �r
ÿ � 0

:

This allows us to use the Einstein summation convention where a repeated
index in both superscript and subscript is implicitly summed over. For
example if x � �x1; . . . ; xr� 0 then the convention states that

�ixi �
Xr

i�1

�ixi:

2.1 Exponential families

We start with the formal de®nition. Let � 2 � � Rr be a parameter
vector, X a random variable, continuous or discrete, and s�X� �
s1�X�; . . . ; sr�X�� � 0 an r-dimensional statistic. Consider a family of

8 Paul Marriott and Mark Salmon



continuous or discrete probability densities, for this random variable, of
the form

p�xj�� � exp f�isi ÿ ý���gm�x�: �1�
Remember we are using the Einstein summation convention in this de®-
nition. The densities are de®ned with respect to some ®xed dominating
measure, �. The function m�x� is non-negative and independent of the
parameter vector �. We shall further assume that the components of s are
not linearly dependent. We call � the natural parameter space and we
shall assume it contains all � such that�

exp f�isigm�x� d� < 1:

A parametric set of densities of this form is called a full exponential
family. If � is open in Rr then the family is said to be regular, and the
statistics s1; . . . ; sr� � 0 are called the canonical statistics.

The function ý��� will play an important role in the development of the
theory below. It is de®ned by the property that the integral of the density
is one, hence

ý��� � log

�
exp f�isigm�x�d�

� �
:

It can also be interpreted in terms of the moment generating function of
the canonical statistic S. This is given by M�S; t; �� where

M�S; t; �� � exp fý�� � t� ÿ ý���g; �2�
see for example Barndorff-Nielsen and Cox (1994, p. 4).

The geometric properties of full exponential families will be explored
later. However, it may be helpful to remark that in section 5 it is shown
that they have a natural geometrical characterisation as the af®ne sub-
spaces in the space of all density functions. They therefore play the role
that lines and planes do in three-dimensional Euclidean geometry.

2.1.1 Examples
Consider what are perhaps the simplest examples of full expo-

nential families in econometrics: the standard regression model and the
linear simultaneous equation model. Most of the standard building
blocks of univariate statistical theory are in fact full exponential families
including the Poisson, normal, exponential, gamma, Bernoulli, binomial
and multinomial families. These are studied in more detail in Critchley
et al. in chapter 10 in this volume.

Introduction to differential geometry 9



Example 1. The standard linear model Consider a linear model
of the form

Y � Xb� r;

where Y is an n� 1 vector of the single endogenous variable, X is an
n� �k� 1� matrix of the k weakly exogenous variables and the intercept
term and r is the n� 1 matrix of disturbance terms which we assume
satis®es the Gauss±Markov conditions. In particular, for all i in 1; . . . ; n

�i � N�0; �2�:
The density function of Y conditionally on the values of the exogenous
variables can then be written as

exp
þ

�2

� � 0
X 0Y
ÿ �� 1

ÿ2�2

� �
Y 0Y
ÿ ��

ÿ þ 0X 0Xþ
2�2

� �n=2� log �2��2�
� ��

:

This is in precisely the form for a full exponential family with the par-
ameter vector

� 0 � þ 0

�2
;

1

ÿ2�2

��
and canonical statistics

�s�Y�� 0 � Y 0X Y 0Y
ÿ �

:

Example 2. The simultaneous equation model Consider the set of
simultaneous linear equations

BYt � !Xt � Ut;

where Y are endogenous variables, X weakly exogenous, U the random
component and t indexes the observations. Moving to the reduced form,
we have

Yt � ÿBÿ1!Xt � Bÿ1Ut;

which gives a full exponential family in a similar way to Example 1.
However, an important point to notice is that the natural parameters �
in the standard full exponential form are now highly non-linear functions
of the parameters in the structural equations. We shall see how the geo-
metric analysis allows us to understand the effect of such non-linear
reparameterisations below.

10 Paul Marriott and Mark Salmon



Example 3. Poisson regression Moving away from linear
models, consider the following Poisson regression model. Let �i denote
the expected value for independent Poisson variables Yi, i � 1; . . . ; n. We
shall initially assume that the �i parameters are unrestricted. The density
for �y1; . . . ; yn� can be written as,

exp
Xn
i�1

yi log ��i� ÿ
Xn
i�1

�i

( )Yn
i�1

1

yi!
:

Again this is in full exponential family form, with the natural parameters
and canonical statistics being

�i � log ��i�; si�y1; . . . ; yn� � yi;

respectively. For a true Poisson regression model, the �i parameters will
be predicted using covariates. This imposes a set of restrictions on the full
exponential family which we consider in section 2.2.

2.1.2 Parameterisations
There is a very strong relationship between geometry and para-

meterisation. In particular, it is important in a geometrically based theory
to distinguish between those properties of the model that are dependent
on a particular choice of parameterisation and those that are independent
of this choice. Indeed, one can de®ne the geometry of a space to be those
properties that are invariant to changes in parameterisation (see Dodson
and Poston (1991)).

In Example 2 we noted that the parameters in the structural equations
need not be simply related to the natural parameters, �. Structural para-
meters will often have a direct econometric interpretation, which will be
context dependent. However, there are also sets of parameters for full
exponential families which always play an important role. The natural
parameters, �, are one such set. A second form are the expected para-
meters �. These are de®ned by

�i��� � Ep�x;���si�x��:
From equation (2) it follows that these parameters can be expressed as

�i��� � @ý

@�i
���: �3�

In a regular full exponential family the change of parameters from � to �
is a diffeomorphism. This follows since the Jacobian of this transforma-
tion is given from equation (3) as

Introduction to differential geometry 11



@�i

@�j
� @2ý

@�i@�j
���:

This will be non-zero since for a regular family ý is a strictly convex
function (see Kass and Vos (1997), p. 16, Theorem 2.2.1).

2.1.3 Repeated sampling and suf®cient statistics
One important aspect of full exponential families concerns the

properties of their suf®cient statistics. Let us assume that we have a
random sample �x1; . . . ; xn� where each observation is drawn from a
density

p�x; j �� � exp f�isi�x� ÿ ý���gm�x�:
The log-likelihood function for the full sample will be

`��; �x1; . . . ; xn�� � �i
Xn
j�1

si�xj� ÿ ný���:

Thus if the parameter space is r-dimensional then there is always an r-
dimensional suf®cient statistic, namelyXn

j�1

s1�xj�; . . . ;
Xn
j�1

sr�xj�
ý !

:

Note that the dimension of this suf®cient statistic will be independent of
the sample size n. This is an important property which we shall see in
section 2.3 has important implications for the geometric theory.

2.2 Curved exponential families

In the previous section we mentioned that full exponential families will be
shown to play the role of af®ne subspaces in the space of all density
functions. Intuitively they can be thought of as lines, planes and
higher-dimensional Euclidean spaces. We can then ask what would be
the properties of curved subfamilies of full exponential families?

In general there are two distinct ways in which subfamilies can be
de®ned: ®rstly by imposing restrictions on the parameters of the full
family, and secondly as parametric families in their own right. We use
this second approach as the basis of a formal de®nition.

Let � be the r-dimensional natural parameter space for the full expo-
nential family given by

p�x j �� � exp f�isi ÿ ý���gm�x�:

12 Paul Marriott and Mark Salmon



Assume that there is a mapping from �, an open subset of Rp to �,

A : � ! �

�} ����;
which obeys the following conditions:
1. the dimension of � is less than that of �,
2. the mapping is one-to-one and smooth and its derivative has full rank

everywhere,
3. if the sequence of points f�i; i � 1; . . . ; rg � A��� converges to

�0 2 A���, then Aÿ1��i� converges to Aÿ1��0� in �.
Under these conditions the parametric family de®ned by

p�x j �� � exp f�i���si ÿ ý������gm�x�
is called a curved exponential family. In particular noting the dimensions
of the relevant spaces, it is an �r; p�-curved exponential family.

2.2.1 Examples
We now look at a set of examples to see how this class of curved

exponential families is relevant to econometrics. For further examples see
Kass and Vos (1997) or Barndorff-Nielsen and Cox (1994), where many
forms of generalised linear models, including logistic, binomial and expo-
nential regressions, non-linear regression models, time-series models and
stochastic processes, are treated. Another important source of curved
exponential families is the imposition and testing of parametric restric-
tions (see Example 5). Finally we mention some general approximation
results which state that any parametric family can be approximated using
a curved exponential family (see, for example, Barndorff-Nielsen and
Jupp (1989)).

Example 3. Poisson regression (continued) Let us now assume
that the parameters in the Poisson regression model treated above are
assumed to be determined by a set of covariates. As a simple example we
could assume the means follow the equation

log ��i� � �� þXi;

where X is an exogenous variable. Hence, in terms of the natural para-
meters we have

�i � �� þXi:

Thus the map de®ning the curved exponential family is

Introduction to differential geometry 13



��; þ� ! �1��; þ�; . . . ; �n��; þ�ÿ �
;

and we have a �n; 2�-curved exponential family.

Example 4. AR�1�-model Consider the simple AR�1� model

xt � �xtÿ1 � �t;

where the disturbance terms are independent N�0; �2� variables, and we
assume x0 � 0. The density function will then be of the form

exp
ÿ1

2�2

� �Xn
i�1

x2i �
�

�2

� �Xn
i�1

xtxtÿ1 �
ÿ�2

2�2

ý !Xn
i�1

x2tÿ1

(

ÿ n

2
log �2��2�

)
:

This is a curved exponential family since the parameters can be written in
the form

�1��; �� � ÿ1

2�2
; �2��; �� � �

�2
; �3��; �� � ÿ�2

2�2
:

The geometry of this and more general ARMA-families has been studied
in Ravishanker (1994).

Example 5. COMFAC model Curved exponential families can
also be de®ned by imposing restrictions on the parameters of a larger, full
or curved, exponential family. As we will see, if these restrictions are non-
linear in the natural parameters the restricted model will, in general, be a
curved exponential family. As an example consider the COMFAC model,

yt � ÿxt � ut;

where x is weakly exogenous and the disturbance terms follow a normal
AR�1� process

ut � �utÿ1 � �t:

Combining these gives a model

yt � �ytÿ1 � ÿxt ÿ �ÿxtÿ1 � �t

which we can think of as a restricted model in an unrestricted auto-
regressive model

yt � �0ytÿ1 � �1xt � �2xtÿ1 � !t:

14 Paul Marriott and Mark Salmon



We have already seen that the autoregressive model gives rise to a curved
exponential structure. The COMFAC restriction in this simple case is
given by a polynomial in the parameters

�2 � �0�1 � 0:

The family de®ned by this non-linear restriction will also be a curved
exponential family. Its curvature is de®ned by a non-linear restriction
in a family that is itself curved. Thus the COMFAC model is curved
exponential and testing the validity of the model is equivalent to testing
the validity of one curved exponential family in another. We shall see
later how the geometry of the embedding of a curved exponential family
affects the properties of such tests, as discussed by van Garderen in this
volume and by Critchley, Marriott and Salmon (1996), among many
others.

2.3 Non-exponential families

Of course not all parametric families are full or curved exponential and
we therefore need to consider families that lie outside this class and how
this affects the geometric theory. We have space only to highlight the
issues here but it is clear that families that have been excluded include the
Weibull, generalised extreme value and Pareto distributions, and these
are of practical relevance in a number of areas of econometric applica-
tion. An important feature of these families is that the dimension of their
suf®cient statistics grows with the sample size. Although this does not
make an exact geometrical theory impossible, it does considerably com-
plicate matters.

Another property that the non-exponential families can exhibit is that
the support of the densities can be parameter dependent. Thus members
of the same family need not be mutually absolutely continuous. Again,
although this need not exclude a geometrical theory, it does make the
development more detailed and we will not consider this case.

In general the development below covers families that satisfy standard
regularity conditions found, for instance, in Amari (1990, p. 16). In detail
these conditions for a parametric family p�x j �� are:
1. all members of the family have common support,
2. let `�� ; x� � log Lik�� ; x�, then the set of functions

@`

@�i
�� ; x� j i � 1; . . . ; n

� �
are linearly independent,

3. moments of @`=@�i�� ; x� exist up to suf®ciently high order,

Introduction to differential geometry 15



4. for all relevant functions integration and taking partial derivatives
with respect to � are commutative.

These conditions exclude a number of interesting models but will not, in
general, be relevant for many standard econometric applications. All full
exponential families satisfy these conditions, as do a large number of
other classes of families.

2.4 Geometry

We now look at the general relationship between parametric statistical
families and geometric objects known as manifolds. These can be thought
of intuitively as multi-dimensional generalisations of surfaces. The theory
of manifolds is fundamental to the development of differential geometry,
although we do not need the full abstract theory (which would be found
in any modern treatment such as Spivak (1979) or Dodson and Poston
(1991)). We develop a simpli®ed theory suitable to explain the geometry
of standard econometric models. Fundamental to this approach is the
idea of an embedded manifold. Here the manifold is de®ned as a subset of
a much simpler geometrical object called an af®ne space. This af®ne space
construction avoids complications created by the need fully to specify
and manipulate the in®nite-dimensional space of all proper density func-
tions. Nothing is lost by just considering this af®ne space approach when
the af®ne space we consider is essentially de®ned as the space of all log-
likelihood functions. An advantage is that with this construction we can
trust our standard Euclidean intuition based on surfaces inside three-
dimensional spaces regarding the geometry of the econometric models
we want to consider.

The most familiar geometry is three-dimensional Euclidean space, con-
sisting of points, lines and planes. This is closely related to the geometry
of a real vector space except for the issue of the choice of origin. In
Euclidean space, unlike a vector space, there is no natural choice of
origin. It is an example of an af®ne geometry, for which we have the
following abstract de®nition.

An af®ne space �X;V� consists of a set X , a vector space V , together
with a translation operation �. This is de®ned for each v 2 V , as a
function

X ! X

x }x� v

which satis®es

�x� v1� � v2 � x� �v1 � v2�

16 Paul Marriott and Mark Salmon



and is such that, for any pair of points in X , there is a unique translation
between them.

Most intuitive notions about Euclidean space will carry over to general
af®ne spaces, although care has to be taken in in®nite-dimensional
examples. We shall therefore begin our de®nition of a manifold by ®rst
considering curved subspaces of Euclidean space.

2.4.1 Embedded manifolds
As with our curved exponential family examples, curved sub-

spaces can be de®ned either using parametric functions or as solutions
to a set of restrictions. The following simple but abstract example can
most easily get the ideas across.

Example 6. The sphere model Consider in R3, with some ®xed
origin and axes, the set of points which are the solutions of

x2 � y2 � z2 � 1:

This is of course the unit sphere, centred at the origin. It is an example
of an embedded manifold in R3 and is a curved two-dimensional surface.
At least part of the sphere can also be de®ned more directly, using par-
ameters, as the set of points

cos��1� sin��2�; sin��1� sin��2�; cos��2�ÿ � j �1 2 �ÿ�; ��; �2 2 �0; ��� þ
:

Note that both the north and south poles have been excluded in this
de®nition, as well as the curve

�ÿ sin��2�; 0; cos��2��:
The poles are omitted in order to ensure that the map from the parameter
space to R3 is invertible. The line is omitted to give a geometric regularity
known as an immersion. Essentially we want to keep the topology of the
parameter space consistent with that of its image in R3.

The key idea here is we want the parameter space, which is an open set
in Euclidean space, to represent the model as faithfully as possible. Thus
it should have the same topology and the same smoothness structure.

We shall now give a formal de®nition of a manifold that will be suf®-
cient for our purposes. Our manifolds will always be subsets of some
®xed af®ne space, so more properly we are de®ning a submanifold.

Consider a smooth map from �, an open subset of Rr, to the af®ne
space �X;V� de®ned by

i : � ! X :

Introduction to differential geometry 17



The set i��� will be an embedded manifold if the following conditions
apply:
(A) the derivative of i has full rank r for all points in �,
(B) i is a proper map, that is the inverse image of any compact set is itself

compact (see BroÈ cker and JaÈ nich (1982), p. 71).
In the sphere example it is Condition (A) that makes us exclude

the poles and Condition (B) that excludes the line. This is necessary for
the map to be a diffeomorphism and this in turn is required to ensure the
parameters represent unique points in the manifold and hence the econo-
metric model is well de®ned and identi®ed.

Another way of de®ning a (sub)manifold of an af®ne space it to use a
set of restriction functions. Here the formal de®nition is: Consider a
smooth map � from an n-dimensional af®ne space �X;V� to Rr.
Consider the set of solutions of the restriction

x j ��x� � 0
� þ

;

and suppose that for all points in this set the Jacobian of � has rank r,
then the set will be an �nÿ r�-dimensional manifold.

There are two points to notice in this alternative de®nition. Firstly, we
have applied it only to restrictions of ®nite-dimensional af®ne spaces. The
generalisation to the in®nite-dimensional case is somewhat more techni-
cal. Secondly, the two alternatives will be locally equivalent due to the
inverse function theorem (see Rudin (1976)).

We note again that many standard differential geometric textbooks do
not assume that a manifold need be a subset of an af®ne space, and
therefore they require a good deal more machinery in their de®nitions.
Loosely, the general de®nition states that a manifold is locally diffeo-
morphic to an open subset of Euclidean space. At each point of the
manifold there will be a small local region in which the manifold looks
like a curved piece of Euclidean space. The structure is arranged such that
these local subsets can be combined in a smooth way. A number of
technical issues are required to make such an approach rigorous in the
current setting. Again we emphasise that we will always have an
embedded structure for econometric applications, thus we can sidestep
a lengthy theoretical development.

Also it is common, in standard geometric works, to regard parameters
not as labels to distinguish points but rather as functions of these
points. Thus if M is an r-dimensional manifold then a set of parameters
��1; . . . ; �r� is a set of smooth functions

�i : M ! R:
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In fact this is very much in line with an econometric view of parameters in
which the structural parameters of the model are functions of the prob-
ability structure of the model. For example, we could parameterise a
family of distributions using a ®nite set of moments. Moments are clearly
most naturally thought of as functions of the points, when points of the
manifolds are actually distribution functions.

2.4.2 Statistical manifolds
In this section we show how parametric families of densities can

be seen as manifolds. First we need to de®ne the af®ne space that embeds
all our families, and we follow the approach of Murray and Rice (1993)
in this development. Rather than working with densities directly we work
with log-likelihoods, since this enables the natural af®ne structure to
become more apparent. However, because of the nature of the likelihood
function some care is needed with this de®nition.

Consider the set of all (smooth) positive densities with a ®xed common
support S, each of which is de®ned relative to some ®xed measure �. Let
this family be denoted by P. Further let us denote by M the set of all
positive measures that are absolutely continuous with respect to �. It will
be convenient to consider this set up to scaling by a positive constant.
That is, we will consider two such measures equivalent if and only if they
differ by multiplication of a constant. We denote this space by M�.
De®ne X by

X � flog �m� j m 2 M�g:
Because m 2 M� is de®ned only up to a scaling constant, we must have
the identi®cation in X that

log �m� � log �Cm� � log �m� � log �C�; 8 C 2 R�:

Note that the space of log-likelihood functions is a natural subset of X . A
log-likelihood is de®ned only up to the addition of a constant (Cox and
Hinkley (1974)). Thus any log-likelihood log �p�x�� will be equivalent to
log �p�x�� � log �C� for all C 2 R�. Finally de®ne the vector space V by
V � f f �x� j f 2 C1�S;R�g:

The pair �X;V� is given an af®ne space structure by de®ning transla-
tions as

log �m�} log �m� � f �x� � log �exp � f �x�m��:
Since exp� f �x�m� is a positive measure, the image of this map does lie in
X . It is then immediate that �log �m� � f1� � f2 � log �m� � � f1 � f2� and
the translation from log �m1� to log �m2� is uniquely de®ned by log �m2� ÿ
log �m1� 2 C1�S;R�, hence the conditions for an af®ne space apply.
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Using this natural af®ne structure, consider a parametric family of

densities that satis®es the regularity conditions from section 2.3.

Condition 1 implies that the set of log-likelihoods de®ned by this family

will lie in X . From Condition 2 it follows that Condition (A) holds

immediately. Condition (B) will hold for almost all econometric models;

in particular it will always hold if the parameter space is compact and in

practice this will not be a serious restriction. Hence the family will be an

(embedded) manifold.

We note further that the set P is de®ned by a simple restriction func-

tion as a subset of M. This is because all elements of P must integrate to

one. There is some intuitive value in therefore thinking of P as a sub-

manifold ofM. However, as pointed out in section 2.4.1, the de®nition of

a manifold by a restriction function works most simply when the em-

bedding space is ®nite-dimensional. There are technical issues involved

in formalising the above intuition, which we do not discuss here.

However, this intuitive idea is useful for understanding the geometric

nature of full exponential families. Their log-likelihood representation

will be

�isi�x� ÿ ý���:

This can be viewed in two parts. Firstly, an af®ne function of the para-

meters � ®ts naturally into the af®ne structure of X . Secondly, there is a

normalising term ý��� which ensures that the integral of the density is

constrained to be one. Very loosely think of M as an af®ne space in

which P is a curved subspace; the role of the function ý is to project

an af®ne function of the natural parameters back into P.

Example 4 AR�1�-model (continued) We illustrate the previous

theory with an explicit calculation for the AR�1� model. We can consider

this family as a subfamily of the n-dimensional multivariate normal

model, where n is the sample size. This is the model that determines

the innovation process. Thus it is a submodel of an n-dimensional full

exponential family. In fact it lies in a three-dimensional subfamily of this

full exponential family. This is the smallest full family that contains the

AR�1� family and its dimension is determined by the dimension of the

minimum suf®cient statistic. The dimension of the family itself is deter-

mined by its parameter space, given in our case by � and �. It is a �3; 2�
curved exponential family.

Its log-likelihood representation is
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`��; � : x� � ÿ1

2�2

� �Xn
i�1

x2i �
�

�2

� �Xn
i�1

xtxtÿ1

� ÿ�2

2�2

ý !Xn
i�1

x2tÿ1 ÿ
n

2
log �2��2�:

2.4.3 Repeated samples
The previous section has demonstrated that a parametric family

p�x j �� has the structure of a geometric manifold. However, in statistical
application we need to deal with repeated samples ± independent or
dependent. So we need to consider a set of related manifolds that are
indexed by the sample size n. The exponential family has a particularly
simple structure to this sequence of manifolds.

One reason for the simple structure is the fact that the dimension of the
suf®cient statistic does not depend on the sample size. If X has density
function given by (1), then an i.i.d. sample �x1; . . . ; xn� has density

p��x1; . . . ; xn� j �� � exp �i
Xn
j�1

si�xj� ÿ ný���
( )Yn

j�1

m�xj�:

This is also therefore a full exponential family, hence an embedded mani-
fold. Much of the application of geometric theory is concerned with
asymptotic results. Hence we would be interested in the limiting form
of this sequence of manifolds as n ! 1. The simple relationship between
the geometry and the sample size in full exponential families is then used
to our advantage.

In the case of linear models or dependent data, the story will of course
be more complex. There will still be a sequence of embedded manifolds
but care needs to be taken with, for example, the limit distribution of
exogenous variables. As long as the likelihood function for a given model
can be de®ned, the geometric construction we have set up will apply. In
general econometric models with dependent data and issues of exogene-
ity, the correct conditional distributions have to be used to de®ne the
appropriate likelihood for our geometric analysis, as was implicitly done
in the AR�1� example above with the prediction error decomposition.

2.4.4 Bibliographical remarks
The term curved exponential family is due to Efron (1975, 1978

and 1982) in a series of seminal papers that revived interest in the geo-
metric aspects of statistical theory. This work was followed by a series of
papers by Amari et al., most of the material from which can be found in
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Amari (1990). The particular geometry treatment in this section owes a
lot to Murray and Rice's (1993) more mathematical based approach, as
well as to the excellent reference work by Kass and Vos (1997). Since the
exponential family class includes all the standard building blocks of sta-
tistical theory, the relevant references go back to the beginnings of prob-
ability and statistics. Good general references are, however, Brown (1986)
and Barndorff-Nielsen (1978, 1988).

3 The tangent space

We have seen that parametric families of density functions can take the
mathematical form of manifolds. However, this in itself has not de®ned
the geometric structure of the family. It is only the foundation stone on
which a geometric development stands. In this section we concentrate on
the key idea of a differential geometric approach. This is the notion of a
tangent space. We ®rst look at this idea from a statistical point of view,
de®ning familiar statistical objects such as the score vector. We then show
that these are precisely what the differential geometric development
requires. Again we shall depart from the form of the development that
a standard abstract geometric text might follow, as we can exploit the
embedding structure that was carefully set up in section 2.4.2. This struc-
ture provides the simplest accurate description of the geometric relation-
ship between the score vectors, the maximum likelihood estimator and
likelihood-based inference more generally.

3.1 Statistical representations

We have used the log-likelihood representation above as an important
geometric tool. Closely related is the score vector, de®ned as

@`

@�1
; . . . ;

@`

@�r

� � 0
:

One of the fundamental properties of the score comes from the following
familiar argument. Since�

p�x j ��d� � 1;

it follows that

@

@�i

�
p �x j ��d� �

�
@

@�i
p�x j ��d� � 0

using regularity condition 4 in section 2.3, then

22 Paul Marriott and Mark Salmon



Ep�x;��
@`

@�i

� �
�

�
1

p�x j ��
@

@�i
p�x j ��p�x j ��d� � 0: �4�

We present this argument in detail because it has important implications
for the development of the geometric theory.

Equation (4) is the basis of many standard asymptotic results when
combined with a Taylor expansion around the maximum likelihood esti-
mate (MLE), �̂;

�̂i ÿ �i � I ij @`

@�j
�O

1

n

� �
�5�

where

ÿ @2`

@�i@�j
��̂�

ý !ÿ1

� I ij

(see Cox and Hinkley (1974)). This shows that, in an asymptotically
shrinking neighbourhood of the data-generation process, the score sta-
tistic will be directly related to the MLE. The geometric signi®cance of
this local approximation will be shown in section 3.2.

The ef®ciency of the maximum likelihood estimates is usually
measured by the covariance of the score vector or the expected Fisher
information matrix:

Iij � Ep�x;�� ÿ @2`

@�i@�j

ý !
� Covp�x;��

@`

@�i
;
@`

@�j

� �
:

Efron and Hinkley (1978), however, argue that a more relevant and hence
accurate measure of this precision is given by the observed Fisher
information

I ij � ÿ @2`

@�i@�j
��̂�;

since this is the appropriate measure to be used after conditioning on
suitable ancillary statistics.

The ®nal property of the score vector we need is its behaviour under
conditioning by an ancillary statistic. Suppose that the statistic a is
exactly ancillary for �, and we wish to undertake inference conditionally
on a. We then should look at the conditional log-likelihood function

`�� j a� � log �p�x j�; a��:
However, when a is exactly ancillary,
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@`

@�i
�� : ja� � @`

@�i
���;

in other words, the conditional score will equal the unconditional. Thus
the score is unaffected by conditioning on any exact ancillary. Because of
this the statistical manifold we need to work with is the same whether we
work conditionally or unconditionally because the af®ne space differs
only by a translation that is invariant.

3.2 Geometrical theory

Having reviewed the properties of the score vector we now look at the
abstract notion of a tangent space to a manifold. It turns out that the
space of score vectors de®ned above will be a statistical representation of
this general and important geometrical construction. We shall look at
two different, but mathematically equivalent, characterisations of a
tangent space.

Firstly, we note again that we study only manifolds that are embedded
in af®ne spaces. These manifolds will in general be non-linear, or curved,
objects. It is natural to try and understand a non-linear object by linear-
ising. Therefore we could study a curved manifold by ®nding the best
af®ne approximation at a point. The properties of the curved manifold, in
a small neighbourhood of this point, will be approximated by those in the
vector space.

The second approach to the tangent space at a point is to view it as the
set of all directions in the manifold at that point. If the manifold were r-
dimensional then we would expect this space to have the same dimension,
in fact to be an r-dimensional af®ne space.

3.2.1 Local af®ne approximation
We ®rst consider the local approximation approach. LetM be an

r-dimensional manifold, embedded in an af®ne space N, and let p be a
point inM. We ®rst de®ne a tangent vector to a curve in a manifoldM. A
curve is de®ned to be a smooth map

ÿ : �ÿ�; �� � R ! M

t } ÿ�t�;

such that ÿ�0� � p. The tangent vector at p will be de®ned by

ÿ 0�0� � lim
h!0

ÿ�h� ÿ ÿ�0�
h

:
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We note that, since we are embedded in N, ÿ 0�0� will be an element of this
af®ne space (see Dodson and Poston (1991)). It will be a vector whose
origin is p. The tangent vector will be the best linear approximation to the
curve ÿ, at p. It is the unique line that approximates the curve to ®rst
order (see Willmore (1959), p. 8).

We can then de®ne TMp, the tangent space at p, to be the set of all
tangent vectors to curves through p. Let us put a parameterisation � of an
open neighbourhood which includes p on M. We de®ne this as a map �

� : ��� Rr� ! N;

where ���� is an open subset of M that contains p, and the derivative is
assumed to have full rank for all points in �. Any curve can then be
written as a composite function in terms of the parameterisation,

� � ÿ : �ÿ�; �� ! � ! N:

Thus any tangent vector will be of the form

@�

@�i
d�i

dt
:

Hence TMp will be spanned by the vectors of N given by

@�

@�i
; i � 1; . . . ; r

� �
:

Thus TMp will be a p-dimensional af®ne subspace of N. For complete-
ness we need to show that the construction of TMp is in fact independent
of the choice of the parameterisation. We shall see this later, but for
details see Willmore (1959).

3.2.2 Space of directions
The second approach to de®ning the tangent space is to think of

a tangent vector as de®ning a direction in the manifold M. We de®ne a
direction in terms of a directional derivative. Thus a tangent vector will
be viewed as a differential operator that corresponds to the directional
derivative in a given direction.

The following notation is used for a tangent vector, which makes clear
its role as a directional derivative

@

@�i
� @i:

It is convenient in this viewpoint to use an axiomatic approach. Suppose
M is a smooth manifold. A tangent vector at p 2 M is a mapping

Xp : C
1�M� ! R
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such that for all f, g 2 C1�M�, and a 2 R:

1. Xp�a:f � g� � aXp� f � � Xp�g�,
2. Xp� f :g� � g:Xp� f � � f :Xp�g�.
It can be shown that the set of such tangent vectors will form an r-
dimensional vector space, spanned by the set

@i; i � 1; . . . ; r
� þ

;

further that this vector space will be isomorphic to that de®ned in section
3.2.1. For details see Dodson and Poston (1991).

It is useful to have both viewpoints of the nature of a tangent vector.
The clearest intuition follows from the development in section 3.2.1,
whereas for mathematical tractability the axiomatic view, in this section,
is superior.

3.2.3 The dual space
We have seen that the tangent space TMp is a vector space whose

origin is at p. We can think of it as a subspace of the af®ne embedding
space. Since it is a vector space it is natural to consider its dual space
TM�

p . This is de®ned as the space of all linear maps

TMp ! R:

Given a parameterisation, we have seen we have a basis for TMp given by

f@1; . . . ; @rg:
The standard theory for dual spaces (see Dodson and Poston (1991))
shows that we can de®ne a basis for TM�

p to be

d�1; . . . ; d�r
� þ

;

where each d�i is de®ned by the relationship

@i�d�j� �
1 if i � j

0 if i 6� j:

(
We can interpret d�i, called a 1-form or differential, as a real valued
function de®ned on the manifold M which is constant in all tangent
directions apart from the @i direction. The level set of the 1-forms de®nes
the coordinate grid on the manifold given by the parameterisation �.

3.2.4 The change of parameterisation formulae
So far we have de®ned the tangent space explicitly by using a set

of basis vectors in the embedding space. This set was chosen through the
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