
Cambridge University Press & Assessment
978-0-521-65084-7 — Analysis in Integer and Fractional Dimensions
Ron Blei
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

I

A Prologue: Mostly Historical

1 From the Linear to the Bilinear

At the start and at the very foundation, there is the Riesz representation

theorem. In original form it is

Theorem 1 (F. Riesz, 1909). Every bounded, real-valued linear func-

tional α on C([a, b]) can be represented by a real-valued function g of

bounded variation on [a, b], such that

α(f) =

∫ b

a

f dg, f * C([a, b]), (1.1)

where the integral in (1.1) is a Riemann–Stieltjes integral.

The measure-theoretic version, headlined also the Riesz representation

theorem, effectively marks the beginning of functional analysis. In gen-

eral form, it is

Theorem 2 Let X be a locally compact Hausdorff space. Every bounded,

real-valued linear functional on C0(X) can be represented by a regular

Borel measure ν on X, such that

α(f) =

∫

X

f dν, f * C0(X). (1.2)

And in its most primal form, measure-theoretic (and non-trivial!) details

aside, the theorem is simply
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2 I A Prologue: Mostly Historical

Theorem 3 If α is a real-valued, bounded linear functional on c0(N) =

c0, then

�α̂�1 :=
∑

n

|α̂(n)| < >, (1.3)

and

α(f) =
∑

n

α̂(n)f(n), f * c0,

where α̂(n) = α(en) (en(n) = 1, and en(j) = 0 for j �= n).

The proof of Theorem 3 is merely an observation, which we state in

terms of the Rademacher functions.

Definition 4 A Rademacher system indexed by a set E is the collection

{rx : x * E} of functions defined on {21, 1}E , such that for x * E

rx(ω) = ω(x), ω * {21, 1}E . (1.4)

To obtain the first line in (1.3), note that

sup

{∥

∥

∥

∥

∥

N
∑

n=1

α̂(n) rn

∥

∥

∥

∥

∥

∞

: N * N

}

= �α̂�1, (1.5)

and to obtain the second, use the fact that finitely supported functions

on N are norm-dense in c0(N).

Soon after F. Riesz had established his characterization of bounded

linear functionals, M. Fréchet succeeded in obtaining an analogous char-

acterization in the bilinear case. (Fréchet announced the result in 1910,

and published the details in 1915 [Fr]; Riesz’s theorem had appeared in

1909 [Rif1].) The novel feature in Fréchet’s characterization was a two-

dimensional extension of the total variation in the sense of Vitali. To

wit, if f is a real-valued function on [a, b]× [a, b], then the total variation

of f can be expressed as

sup

{∥

∥

∥

∥

∥

∑

n,m

∆2f(xn, ym) rnm

∥

∥

∥

∥

∥

∞

: a < · · · < xn < · · · < b,

a < · · · < ym < · · · < b

}

, (1.6)
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From the Linear to the Bilinear 3

where ∆2 is the ‘second difference’,

∆2f(xn, ym)

= f(xn, ym) 2 f(xn−1, ym) + f(xn−1, ym−1) 2 f(xn, ym−1), (1.7)

and {rnm : (n, m) * N
2} is the Rademacher system indexed by N

2.

The two-dimensional extension of this one-dimensional measurement is

given by:

Definition 5 The Fréchet variation of a real-valued function f on

[a, b] × [a, b] is

�f�F2
= sup

{∥

∥

∥

∥

∥

∑

n,m

∆2f(xn, ym) rn·rm

∥

∥

∥

∥

∥

∞

: a < · · · < xn < · · · < b,

< · · · < ym < · · · < b

}

. (1.8)

(rn · rm is defined on {21, 1}N × {21, 1}N by

rn · rm(ω1, ω2) = ω1(n)ω2(m),

and � · �∞ is the supremum over {21, 1}N × {21, 1}N.)

Based on (1.8), the bilinear analog of Riesz’s theorem is

Theorem 6 (Fréchet, 1915). A real-valued bilinear functional β on

C([a, b]) is bounded if and only if there is a real-valued function h on

[a, b] × [a, b] with �h�F2
< >, and

β(f, g) =

∫ b

a

∫ b

a

f·g dh, f * C([a, b]), g * C([a, b]), (1.9)

where the right side of (1.9) is an iterated Riemann–Stieltjes integral.

The crux of Fréchet’s proof was a construction of the integral in (1.9),

a non-trivial task at the start of the twentieth century when integration

theories had just begun developing.

Like Riesz’s theorem, Fréchet’s theorem can also be naturally recast

in the setting of locally compact Hausdorff spaces; we shall come to this

in good time. At this juncture we will prove only its primal version.
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4 I A Prologue: Mostly Historical

Theorem 7 If β is a bounded bilinear functional on c0, and β(em, en) :=

β̂(m, n), then

sup

{∥

∥

∥

∥

∥

∑

m∈S,n∈T

β̂(m, n) rm · rn

∥

∥

∥

∥

∥

∞

: finite sets S ¢ N, T ¢ N

}

:= �β̂�F2
< >, (1.10)

and

β(f, g) =

∞
∑

m=1

(

∞
∑

n=1

β̂(m, n) g(n)

)

f(m)

=

∞
∑

n=1

(

∞
∑

m=1

β̂(m, n) f(m)

)

g(n),

f * c0, g * c0. (1.11)

Conversely, if β̂ is a real-valued function on N×N such that �β̂�F2
< >,

then (1.11) defines a bounded bilinear functional on c0.

The key to Theorem 7 is

Lemma 8 If β̂ = (β̂(m, n) : (m, n) * N
2) is a scalar array, then

�β̂�F2
= sup

{∣

∣

∣

∣

∣

∑

m∈S,n∈T

β̂(m, n) xm yn

∣

∣

∣

∣

∣

: xm * [21, 1],

yn * [21, 1], finite sets S ¢ N, T ¢ N

}

. (1.12)

Proof: The right side obviously bounds �β̂�F2
. To establish the reverse

inequality, suppose S and T are finite subsets of N, and ω * {21, 1}N.

Then

�β̂�F2
g

∥

∥

∥

∥

∥

∥

∑

n∈T,m∈S

β̂(m, n) rm · rn

∥

∥

∥

∥

∥

∥

∞

,

g
∑

n∈T

∣

∣

∣

∣

∣

∑

m∈S

β̂(m, n) rm(ω)

∣

∣

∣

∣

∣

. (1.13)
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From the Linear to the Bilinear 5

If yn * [21, 1] for n * T , then the right side of (1.13) bounds
∣

∣

∣

∣

∣

∑

n∈T

(

∑

m∈S

β̂(m, n) rm(ω)

)

yn

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

m∈S

(

∑

n∈T

β̂(m, n) yn

)

rm(ω)

∣

∣

∣

∣

∣

.

(1.14)

By maximizing the right side of (1.14) over ω * {21, 1}N, we conclude

that �β̂�F2
bounds

∑

m∈S

∣

∣

∣

∣

∣

∑

n∈T

β̂(m, n) yn

∣

∣

∣

∣

∣

. (1.15)

If xm * [21, 1] for m * S, then (1.15) bounds
∣

∣

∣

∣

∣

∑

m∈S

(

∑

n∈T

β̂(m, n) yn

)

xm

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

m∈S,n∈T

β̂(m, n) xm yn

∣

∣

∣

∣

∣

, (1.16)

which implies that �β̂�F2
bounds the right side of (1.12).

Proof of Theorem 7: If β is a bilinear functional on c0, with norm

�β� := sup{|β(f, g)| : f * Bc0 , g * Bc0}, then (because finitely sup-

ported functions are norm-dense in c0)

�β� = sup

{∣

∣

∣

∣

∣

∑

m∈S,n∈T

β̂(m, n) xm yn

∣

∣

∣

∣

∣

: xm * [21, 1],

yn * [21, 1], finite sets S ¢ N, T ¢ N

}

,

and Lemma 8 implies (1.10).

Let f *c0 and g*c0. If N *N, then let fN=f1[N ] and gN=g1[N ]. (Here

and throughout, [N ] = {1, . . . , N}.) Because fN ³ f and gN ³ g as

N ³ > (convergence in c0), and β is continuous in each coordinate, we

obtain β(fN , g) ³ β(f, g) and β(f, gN ) ³ β(f, g) as N ³ >, and then

obtain (1.11) by noting that β(fN , gN ) = ΣN
m=1Σ

N
n=1β̂(m, n)g(n)f(m).

Conversely, if β̂ is a scalar array on N × N, and f and g are finitely

supported real-valued functions on N, then define

β(f, g) =
∑

m

∑

n

β̂(m, n)g(n)f(m). (1.17)

www.cambridge.org/9780521650847
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-65084-7 — Analysis in Integer and Fractional Dimensions
Ron Blei
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 I A Prologue: Mostly Historical

By Lemma 8 and the assumption �β̂�F2
< >, β is a bounded bilinear

functional on a dense subspace of c0, and therefore determines a bounded

bilinear functional on c0. The first part of the theorem implies (1.10)

and (1.11).

Theorem 7 was elementary, basic, and straightforward – view it as a

warm-up. In passing, observe that whereas every bounded linear func-

tional on c0 obviously extends to a bounded linear functional on l∞, the

analogous fact in two dimensions, that every bounded bilinear functional

on c0 extends to a bounded bilinear functional l∞ is also elementary, but

not quite as easy to verify. This ‘two-dimensional’ fact, specifically that

(1.11) extends to f and g in l∞, will be verified in a later chapter.

2 A Bilinear Theory

Notably, Fréchet did not consider in his 1915 paper the question whether

there exist functions with bounded variation in his sense, but with infi-

nite total variation in the sense of Vitali. Whether bilinear functionals

on C([a, b]) can be distinguished from linear functionals on C([a, b]2) is

indeed a basic and important issue (Exercises 1, 2, 4, 8). So far as I

can determine, Fréchet never considered or raised it (at least, not in

print). Be that as it may, this question led directly to the next advance.

Littlewood began his classic 1930 paper [Lit4] thus: ‘Professor

P.J. Daniell recently asked me if I could find an example of a function

of two variables, of bounded variation according to a certain definition

of Fréchet, but not according to the usual definition.’ Noting that the

problem was equivalent to finding real-valued arrays

β̂ = (β̂(m, n) : (m, n) * N
2)

with �β̂�F2
< > and �β̂�1 = Σm,n|β̂(m, n)| = >, Littlewood settled

the problem by a quick use of the Hilbert inequality (Exercise 1). He

then considered this question: whereas there are β̂ with �β̂�F2
< >

and �β̂�1 = >, and (at the other end) �β̂�F2
< > implies �β̂�2 < >

(Exercise 3), are there p * (1, 2) such that

�β̂�F2
< > ó �β̂�p < >?

Littlewood gave this precise answer.

Theorem 9 (the 4/3 inequality, 1930).

�β̂�p < > for all β̂ with �β̂�F2
< > if and only if p g

4

3
.
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A Bilinear Theory 7

To establish ‘sufficiency’, that �β̂�F2
< > implies �β̂�4/3 < >,

Littlewood proved and used the following:

Theorem 10 (the mixed (l1, l2)-norm inequality, 1930). For all

real-valued arrays β̂ = (β̂(m, n) : (m, n) * N
2),

∑

m

(

∑

n

|β̂(m, n)|2

)
1

2

f κ�β̂�F2
, (2.1)

where κ > 0 is a universal constant.

This mixed-norm inequality, which was at the heart of Littlewood’s

argument, turned out to be a precursor (if not a catalyst) to a sub-

sequent, more general inequality of Grothendieck. We shall come to

Grothendieck’s inequality in a little while.

To prove ‘necessity’, that there exists β̂ with �β̂�F2
< > and

�β̂�p = > for all p < 4/3,

Littlewood used the finite Fourier transform. (You are asked to work

this out in Exercise 4, which, like Exercise 1, illustrates first steps in

harmonic analysis.)

Besides motivating the inequalities we have just seen, Fréchet’s 1915

paper led also to studies of ‘bilinear integration’, first by Clarkson and

Adams in the mid-1930s (e.g., [ClA]), and then by Morse and Transue in

the late 1940s through the mid-1950s (e.g., [Mor]). For their part, firmly

believing that the two-dimensional framework was interesting, challeng-

ing, and important, Morse and Transue launched extensive investiga-

tions of what they dubbed bimeasures: bounded bilinear functionals on

C0(X)×C0(Y ), where X and Y are locally compact Hausdorff spaces. In

this book, we take a somewhat more general point of view:

Definition 11 Let X and Y be sets, and let C ¢ 2X and D ¢ 2Y

be algebras of subsets of X and Y , respectively. A scalar-valued set-

function µ on C × D is an F2-measure if for each A * C, µ(A, ·) is

a scalar measure on (Y, D), and for each B * D, µ(·, B) is a scalar

measure on (X, C).

That bimeasures are F2-measures is the two-dimensional extension of

Theorem 2. (The utility of the more general definition is illustrated in

Exercise 8.)

When highlighting the existence of ‘true’ bounded bilinear functionals,

Morse and Transue all but ignored Littlewood’s prior work. In their first

www.cambridge.org/9780521650847
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8 I A Prologue: Mostly Historical

paper on the subject, underscoring ‘the difficult problem which Clarkson

and Adams solve . . . ’, they stated [MorTr1, p. 155]: ‘That [the Fréchet

variation] can be finite while the classical total variation . . . of Vitali is

infinite has been shown by example by Clarkson and Adams [in [ClA]].’

(In their 1933 paper [ClA], the authors did, in passing, attribute to

Littlewood the first such example [ClA, p. 827], and then proceeded to

give their own [ClA, pp. 837–41]. I prefer Littlewood’s simpler example,

which turned out to be more illuminating.) The more significant miss

by Morse and Transue was a fundamental inequality that would play

prominently in the bilinear theory – the same inequality that had been

foreshadowed by Littlewood’s earlier results.

3 More of the Bilinear

The inequality missed by Morse and Transue first appeared in

Grothendieck’s 1956 work [Gro2], a major milestone that was missed by

most. The paper, pioneering new tensor-theoretic technology, was diffi-

cult to read and was hampered by limited circulation. (It was published

in a journal carried by only a few university libraries.) The inequal-

ity itself, the highlight of Grothendieck’s 1956 paper, was eventually

unearthed a decade or so later. Recast and reformulated in a Banach

space setting, this inequality became the focal point in a seminal 1968

paper by Lindenstrauss and Pelczynski [LiPe]. The impact of this 1968

work was decisive. Since then, the inequality, which Grothendieck him-

self billed as the ‘théorème fondamental de la théorie metrique des pro-

duits tensoriels’ has been reinterpreted and broadly applied in various

contexts of analysis. It has indeed become recognized as a fundamental

cornerstone.

Theorem 12 (the Grothendieck inequality). If β̂ = (β̂(m, n) :

(m, n) * N
2) is a real-valued array, and {xn} and {yn} are finite subsets

in Bl2 , then

∣

∣

∣

∣

∣

∑

n,m

β̂(m, n)�xm,yn�

∣

∣

∣

∣

∣

f κG �β̂�F2
, (3.1)

where Bl2 is the closed unit ball in l2, �·, ·� denotes the usual inner product

in l2, and κG > 1 is a universal constant.
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More of the Bilinear 9

Restated (via Lemma 8), the inequality in (3.1) has a certain aesthetic

appeal:

sup

{
∣

∣

∣

∣

∣

∑

m∈S,n∈T

β̂(m, n)�xm,yn�

∣

∣

∣

∣

∣

: xm * l2,yn * l2,

�xm�2 f 1, �yn�2 f 1, finite S ¢ N, T ¢ N

}

f κG sup

{
∣

∣

∣

∣

∣

∑

m∈S,n∈T

β̂(m, n)xmyn

∣

∣

∣

∣

∣

: xm * R,

yn * R, |xm| f 1, |yn| f 1, finite S ¢ N, T ¢ N

}

. (3.2)

So stated, the inequality says that products of scalars on the right side of

(3.2) can be replaced, up to a universal constant, by the dot product in a

Hilbert space. In this light, a question arises whether one can replace the

dot product on the left side of (3.1) with, say, the dual action between

vectors in the unit balls of lp and lq, 1/p + 1/q = 1 and p * [1, 2). The

answer is no (Exercise 6).

Grothendieck did not explicitly write what had led him to his ‘théo-

rème fondamental’, but did remark [Gro2, p. 66] that Littlewood’s

mixed-norm inequality (Theorem 10) was an instance of it (Exercise 5).

The actual motivation not withstanding, the historical connections

between Grothendieck’s inequality, Morse’s and Transue’s bimeasures,

Littlewood’s inequality(ies), and Fréchet’s 1915 work are apparent in

this important consequence of Theorem 12.

Theorem 13 (the Grothendieck factorization theorem). Let X be

a locally compact Hausdorff space. If β is a bounded bilinear functional

on C0(X) (a bimeasure on X ×X), then there exist probability measures

ν1 and ν2 on the Borel field of X such that for all f * C0(X), g * C0(X),

|β(f, g)| f κG�β��f�L2(ν1)�g�L2(ν2), (3.3)

where κG > 0 is a universal constant, and

�β� = sup{|β(f, g)| : (f, g) * BC0(X) × BC0(X)}.

This ‘factorization theorem’, which can be viewed as a two-dimensional

surrogate for the ‘one-dimensional’ Radon–Nikodym theorem, has a far-

reaching impact. A case for it will be duly made in this book.
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10 I A Prologue: Mostly Historical

4 From Bilinear to Multilinear and Fraction-linear

Up to this point we have focused on the bilinear theory. As our story

unfolds in chapters to come, we will consider questions about extend-

ing ‘one-dimensional’ and ‘two-dimensional’ notions to other dimensions:

higher as well as fractional. Some answers will be predictable and obvi-

ous, but some will reveal surprises. In this final section of the prologue,

we briefly sketch the backdrop and preview some of what lies ahead.

The multilinear Fréchet theorem in its simplest guise is a straight-

forward extension of Theorem 7:

Theorem 14 An n-linear functional β on c0 is bounded if and only if

�β̂�Fn
< >, where β̂(k1, . . . , kn) = β(ek1

, . . . , ekn
) and

�β̂�Fn
= sup

{∥

∥

∥

∥

∥

∑

k1∈T1,...,kn∈Tn

β̂(k1, . . . , kn)rk1
· · · · ·rkn

∥

∥

∥

∥

∥

∞

:

finite sets T1 ¢ N, . . . , Tn ¢ N

}

. (4.1)

Moreover, the n-linear action of β on c0 is given by

β(f1, . . . , fn) =
∑

k1

. . .

(

∑

kn

β̂(k1, . . . , kn)fn(kn)

)

· · · f1(k1),

(f1, . . . , fn) * c0× · · · ×c0. (4.2)

Though predictable, the analogous general measure-theoretic version

requires a small effort. (The proof is by induction.)

The extension of Littlewood’s 4/3-inequality to higher (integer)

dimensions is not altogether obvious. (So far that I know, Littlewood

himself never addressed the issue.) This extension, needed in a harmonic-

analytic context, was stated and first proved by G. Johnson and

G. Woodward in [JWo]:

Theorem 15

�β̂�p < > for all n-arrays β̂ with �β̂�Fn
< >

if and only if p g
2n

n + 1
.

‘One half’ of this theorem could be found also in [Da, p. 33]. For his

purpose in [Da], Davie called on Littlewood’s mixed-norm inequality
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