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1

Introduction

The processes of freezing and melting were present at the beginning of the
Earth and continue to affect the natural and industrial worlds. These processes
created the Earth’s crust and affect the dynamics of magmas and ice floes,
which in turn affect the circulation of the oceans and the patterns of climate and
weather. A huge majority of commercial solid materials were “born” as liquids
and frozen into useful configurations. The systems in which solidification is
important range in scale from nanometers to kilometers and couple with a vast
spectrum of other physics.

The solidification of a liquid or the melting of a solid involves a complex-
interplay of many physical effects. The solid–liquid interface is an active free
boundary from which latent heat is liberated during phase transformation. This
heat is conducted away from the interface through the solid and liquid, result-
ing in the presence of thermal boundary layers near the interface. Across the
interface, the density changes, say, from ρ� to ρs. Thus, if ρs > ρ�, so that the
material shrinks upon solidification, a flow is induced toward the interface from
“infinity.”

If the liquid is not pure but contains solute, preferential rejection or incor-
poration of solute occurs at the interface. For example, if a single solute is
present and its solubility is smaller in the (crystalline) solid than it is in the
liquid, the solute will be rejected at the interface. This rejected material will
be diffused away from the interface through the solid, the liquid, or both, re-
sulting in the presence of concentration boundary layers near the interface. The
thermal and concentration boundary layer structures determine, in large part,
whether morphological instabilities of the interface exist and what the ultimate
microstructure of the solid becomes. Many a solidification problem of interest
couples the preceding purely diffusive effects with effects of thermodynamic
disequilibrium, crystalline anisotropy, and convection in the melt.

1
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2 1. Introduction

On the coarsest level of understanding, freezing is of concern only as a heat or
mass transfer process. Thus, one cools a glass of bourbon by inserting ice cubes
that extract heat by melting. Likewise, one places salt on icy roads in Evanston
to facilitate melting because salt water has a lower melting temperature than
pure water.

On a finer level of understanding, freezing can create solids whose mi-
crostructures are determined by the process parameters and the intrinsic insta-
bilities of the solid–liquid front. Figure 1.1 shows a longitudinal section of a
Zn–Al alloy casting. Notice the dendritic structures that extend inward from
the cold boundary and a core region in which no microstructure is visible. At
later times, spontaneous nucleation in the core can cause“snowflakes” to grow
in the core. The coarseness orfineness of the microstructure helps determine
whether mechanical and thermal reprocessing can be accomplished without the
appearance of cracks.

Under certain conditions of freezing, the moving solidification front can be
susceptible to traveling-wave instabilities, giving structural patterns that can be
made visible; see Figure 1.2.

When a eutectic alloy is frozen, the solid can take the form of a lamellar
structure, alternate plates of two alloys spatially periodic perpendicular to the
freezing direction. Under certain conditions this mode of growth is stable, giving
rise to the more complex modes of growth, an example of which is shown in
Figure 1.3.

Under conditions of rapid solidification, the microstructure can take on
metastable states and patterns inconsistent with equilibrium thermodynamics.
Figure 1.4 shows a banded structure in an Al–Cu alloy consisting of alternate
layers of structured and unstructured material spatially periodic in the freez-
ing direction. The structured layers may contain cells, dendrites, or eutectic
material, whereas the alternate layers seem to have no visible microstructure.

If the solidification process occurs in a gravitationalfield, the thermal and
solutal gradients may induce buoyancy-driven convection, which is known to
affect the interfacial patterns greatly and, hence, the solidification microstruc-
tures present in the solidified material. The coupling offluid flow in the melt
with phase transformation at the interface can result in changes of microstruc-
ture scale and pattern due to alterations of frontal instabilities and the creation
of new ones.

When an alloy is frozen at moderate speeds and dendritic arrays are formed,
interesting dynamics occur in the dendrite–liquid mixture – the mushy zone.
Here, solutal convection can be localized, creating channels parallel to the
freezing direction, as shown in Figure 1.5. The channels frozen into the solid
are called freckles, and their presence can significantly weaken the structure
of the solid.
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Figure 1.1. Longitudinal section of the quenched interface of the Zn–27%Al alloy.
From Ayik et al. (1986).

3
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4 1. Introduction

Figure 1.2. Etched longitudinal section of a Ga-doped Ge single crystal showing trav-
eling waves on the interface. Thearrow indicates the growth direction. From Singh,
Witt, and Gatos (1974).

Figure 1.3. TEM micrographs of laser rapidly solidified Al–40 wt % Cu alloy oscillatory
instabilities. V = 0.03 m/s. From Gill and Kurz (1993).

Given that the solid has crystalline structure, intrinsic symmetries in the
material properties help define the continuum material. The surface energy and
the kinetic coefficient on the interface as well as the bulk transport properties
inherit the directional properties of the crystal, and thus anisotropies are often
significant in determining the cellular or dendritic patterns that emerge. If the
anisotropy is strong enough, the front can exhibit facets and corners.
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Figure 1.4. Enlarged view of the banded structure in Al–Cu 17 wt %. The dark bands
have a dendritic structure, whereas the light bands are microsegregation free. DB= dark
band, LB= light band, TW= total bandwidth, LW= light bandwidth, andVs = growth
rate. From Zimmermann et al. (1991).

Figure 1.5. A photograph of mushy layer chimneys during an experiment with an am-
monium chloride solution. In this system, pure ammonium chloride crystals are formed
when the solution is cooled below its freezing temperature, leaving behind a diluted so-
lution with a density lower than that of the bulkfluid. In the present case, the mushy layer
is growing away from afixed cold base that is at a temperature below the eutectic point,
and thus both the solid–mush and mush–liquid interfaces are advancing at a decreasing
rate. At the time the photograph was taken the distance between the base of the tank and
the eutectic front was about 3 cm. Notice that the chimney walls and the mush–liquid
interface areflat to a goodfirst approximation. From Schulze and Worster (1998).

Finally, single crystals can be grown having, one would hope, uniform prop-
erties as long as the growth rate is very small. However, even in such cases the
structure can be interrupted by defects or striations. In Figure 1.6, thermalfluc-
tuations have created solute variations in the form of concentric rings, making
the crystal inhomogeneous. If the crystal were rotated to remove azimuthal
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6 1. Introduction

Figure 1.6. Transverse section of a Ba2NaNb5O15 crystal whose rotational striations
form concentric closed loops. The striations are caused by temperaturefluctuations in
the melt. From Hurle (1993).

thermal variations, rotational striations could occur having the form of spirals
emanating from the center of rotation.

The challenge to the scientist is to understand the sources of such inhomo-
geneities, quantify the phenomena at work, and learn to control the processes
so as to create desired microstructures in situ on demand. Significant progress
has been made in these directions, though the end point is not at hand. Clearly,
this is a hugefield, and inevitably an author must make subjective choices of
what material to include. The view taken here is that one should delve into a
“core” of thefield. A grasp of the physics is developed by using examples of
increasing complexity intended to create a deep physical insight applicable to
more complex problems.
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