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Introduction

The processes of freezing and melting were present at the beginning of the
Earth and continue to affect the natural and industrial worlds. These processes
created the Earth’s crust and affect the dynamics of magmas and ice floes,
which in turn affect the circulation of the oceans and the patterns of climate and
weather. A huge majority of commercial solid materials were “born” as liquids
and frozen into useful configurations. The systems in which solidification is
important range in scale from nanometers to kilometers and couple with a vast
spectrum of other physics.

The solidification of a liquid or the melting of a solid involves a complex-
interplay of many physical effects. The solid–liquid interface is an active free
boundary from which latent heat is liberated during phase transformation. This
heat is conducted away from the interface through the solid and liquid, result-
ing in the presence of thermal boundary layers near the interface. Across the
interface, the density changes, say, from ρ� to ρs. Thus, if ρs > ρ�, so that the
material shrinks upon solidification, a flow is induced toward the interface from
“infinity.”

If the liquid is not pure but contains solute, preferential rejection or incor-
poration of solute occurs at the interface. For example, if a single solute is
present and its solubility is smaller in the (crystalline) solid than it is in the
liquid, the solute will be rejected at the interface. This rejected material will
be diffused away from the interface through the solid, the liquid, or both, re-
sulting in the presence of concentration boundary layers near the interface. The
thermal and concentration boundary layer structures determine, in large part,
whether morphological instabilities of the interface exist and what the ultimate
microstructure of the solid becomes. Many a solidification problem of interest
couples the preceding purely diffusive effects with effects of thermodynamic
disequilibrium, crystalline anisotropy, and convection in the melt.

1

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521650801 - Theory of Solidification
Stephen H. Davis
Excerpt
More information

http://www.cambridge.org/0521650801
http://www.cambridge.org
http://www.cambridge.org


2 1. Introduction

On the coarsest level of understanding, freezing is of concern only as a heat or
mass transfer process. Thus, one cools a glass of bourbon by inserting ice cubes
that extract heat by melting. Likewise, one places salt on icy roads in Evanston
to facilitate melting because salt water has a lower melting temperature than
pure water.

On a finer level of understanding, freezing can create solids whose mi-
crostructures are determined by the process parameters and the intrinsic insta-
bilities of the solid–liquid front. Figure 1.1 shows a longitudinal section of a
Zn–Al alloy casting. Notice the dendritic structures that extend inward from
the cold boundary and a core region in which no microstructure is visible. At
later times, spontaneous nucleation in the core can cause “snowflakes” to grow
in the core. The coarseness or fineness of the microstructure helps determine
whether mechanical and thermal reprocessing can be accomplished without the
appearance of cracks.

Under certain conditions of freezing, the moving solidification front can be
susceptible to traveling-wave instabilities, giving structural patterns that can be
made visible; see Figure 1.2.

When a eutectic alloy is frozen, the solid can take the form of a lamellar
structure, alternate plates of two alloys spatially periodic perpendicular to the
freezing direction.Under certain conditions thismode of growth is stable, giving
rise to the more complex modes of growth, an example of which is shown in
Figure 1.3.

Under conditions of rapid solidification, the microstructure can take on
metastable states and patterns inconsistent with equilibrium thermodynamics.
Figure 1.4 shows a banded structure in an Al–Cu alloy consisting of alternate
layers of structured and unstructured material spatially periodic in the freez-
ing direction. The structured layers may contain cells, dendrites, or eutectic
material, whereas the alternate layers seem to have no visible microstructure.

If the solidification process occurs in a gravitational field, the thermal and
solutal gradients may induce buoyancy-driven convection, which is known to
affect the interfacial patterns greatly and, hence, the solidification microstruc-
tures present in the solidified material. The coupling of fluid flow in the melt
with phase transformation at the interface can result in changes of microstruc-
ture scale and pattern due to alterations of frontal instabilities and the creation
of new ones.

When an alloy is frozen at moderate speeds and dendritic arrays are formed,
interesting dynamics occur in the dendrite–liquid mixture – the mushy zone.
Here, solutal convection can be localized, creating channels parallel to the
freezing direction, as shown in Figure 1.5. The channels frozen into the solid
are called freckles, and their presence can significantly weaken the structure
of the solid.
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Figure 1.1. Longitudinal section of the quenched interface of the Zn–27%Al alloy.
From Ayik et al. (1986).
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4 1. Introduction

Figure 1.2. Etched longitudinal section of a Ga-doped Ge single crystal showing trav-
eling waves on the interface. The arrow indicates the growth direction. From Singh,
Witt, and Gatos (1974).

Figure 1.3. TEMmicrographs of laser rapidly solidifiedAl–40wt%Cualloy oscillatory
instabilities. V = 0.03 m/s. From Gill and Kurz (1993).

Given that the solid has crystalline structure, intrinsic symmetries in the
material properties help define the continuum material. The surface energy and
the kinetic coefficient on the interface as well as the bulk transport properties
inherit the directional properties of the crystal, and thus anisotropies are often
significant in determining the cellular or dendritic patterns that emerge. If the
anisotropy is strong enough, the front can exhibit facets and corners.
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1. Introduction 5

Figure 1.4. Enlarged view of the banded structure in Al–Cu 17 wt %. The dark bands
have a dendritic structure, whereas the light bands are microsegregation free. DB = dark
band, LB = light band, TW = total bandwidth, LW = light bandwidth, and Vs = growth
rate. From Zimmermann et al. (1991).

Figure 1.5. A photograph of mushy layer chimneys during an experiment with an am-
monium chloride solution. In this system, pure ammonium chloride crystals are formed
when the solution is cooled below its freezing temperature, leaving behind a diluted so-
lution with a density lower than that of the bulk fluid. In the present case, the mushy layer
is growing away from a fixed cold base that is at a temperature below the eutectic point,
and thus both the solid–mush and mush–liquid interfaces are advancing at a decreasing
rate. At the time the photograph was taken the distance between the base of the tank and
the eutectic front was about 3 cm. Notice that the chimney walls and the mush–liquid
interface are flat to a good first approximation. From Schulze and Worster (1998).

Finally, single crystals can be grown having, one would hope, uniform prop-
erties as long as the growth rate is very small. However, even in such cases the
structure can be interrupted by defects or striations. In Figure 1.6, thermal fluc-
tuations have created solute variations in the form of concentric rings, making
the crystal inhomogeneous. If the crystal were rotated to remove azimuthal
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6 1. Introduction

Figure 1.6. Transverse section of a Ba2NaNb5O15 crystal whose rotational striations
form concentric closed loops. The striations are caused by temperature fluctuations in
the melt. From Hurle (1993).

thermal variations, rotational striations could occur having the form of spirals
emanating from the center of rotation.

The challenge to the scientist is to understand the sources of such inhomo-
geneities, quantify the phenomena at work, and learn to control the processes
so as to create desired microstructures in situ on demand. Significant progress
has been made in these directions, though the end point is not at hand. Clearly,
this is a huge field, and inevitably an author must make subjective choices of
what material to include. The view taken here is that one should delve into a
“core” of the field. A grasp of the physics is developed by using examples of
increasing complexity intended to create a deep physical insight applicable to
more complex problems.
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2

Pure substances

2.1 Planar Interfaces

2.1.1 Mathematical Model

Consider a system in thermal equilibrium so that the temperature T is uniform.
Part of the system is liquid and part is solid. For the two phases to coexist,
the solid–liquid interfaces must be planar, and the temperature must be Tm,

the melting temperature; Tm may depend on pressure and is here taken to be
constant.

The amount of heat required to change a unit mass of solid into liquid at
T = Tm is the latent heat L; if ρs is the density of the solid, then the latent
heat per unit volume is LV , LV = ρsL . The amount of heat required to raise,
without change of phase, the temperature of a unit mass of solid or liquid by
1◦C is the specific heat cp.

Consider now a system in which temperature gradients are present so that
there are heat fluxes. The bulk heat balance in either phase alone can be obtained
by considering a material volume V(t), as shown in Figure 2.1, and is given by

d

dt

∫
V(t)

ρcpT dV = −
∫

∂V(t)

q · ndS, (2.1)

where ρ is the density, q is the heat flux, and n is the unit outward–normal
vector to V on its (closed) boundary ∂V .

The transport theorem for any smooth field F passing through V states that

d

dt

∫
V(t)

FdV =
∫

V(t)

[
∂F

∂t
+ ∇ · (Fv)

]
dV, (2.2)

where v is the velocity field of the material (see, e.g., Serrin 1959).
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8 2. Pure substances

Figure 2.1. A control volume V entirely with a bulk phase; ∂V is its boundary and n
is the unit outward normal.

If Gauss’s theorem and identity (2.2) are used on relation (2.1), then∫
V(t)

{
∂

∂t
(ρcpT ) + ∇ · (ρcpT v)

}
dV = −

∫
V(t)

∇ · qdV,

and since V is arbitrary and the integrands are supposed smooth, the point form
of the bulk mass balance is obtained as

d

dt
(ρcpT ) + ρcpT∇ · v = −∇ · q, (2.3)

where the material derivative is given by

d

dt
= ∂

∂t
+ v · ∇. (2.4)

To complete the specification of the heat balance, a constitutive law is required
that relates q to the temperature field. It is assumed here that the Fourier law of
heat conduction holds, that is

q = −kT∇T, (2.5)

where kT is the thermal conductivity of the phase. Thus, the final form of the
bulk heat balance is given by

d

dt
(ρcpT ) + ρcpT∇ · v = ∇ · kT∇T . (2.6)

In the absence of bulk flow, v = 0, and for ρ, cp, kT constant, Eq. (2.6) reduces
to the standard heat-conduction equation

∂T

∂t
= κ∇2T, (2.7)
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2.1 Planar interfaces 9

Figure 2.2. A control voume V spanning the interface S that moves at speed Vn normal
to itself: ∂V is the boundary of V and n is the unit outward normal.

where

κ = kT/ρcp

is the thermal diffusivity of the phase.
On a moving (planar) interface, there is a heat balance. Consider a (two-

dimensional) volume of height δ spanning the interface, as shown in Figure
2.2. If Vn is the speed of the interface (normal to itself), then in a time δt and
for δ → 0,

ρsLVnδt = (q� − qs) · nδt

because the (smooth) heat accumulation vanishes as δ → 0. Thus, if Fourier
heat conduction is applied, Eq. (2.5), the interfacial heat balance is

ρsLVn = (ks
T∇T s − k�

T∇T �) · n. (2.8)

One sees that the net heat entering the interface, the right-hand side, determines
the speed Vn of the front.

In addition, the temperature is continuous across the interface and is known
to be the equilibrium melting temperature Tm,

T s = T � = Tm. (2.9)

2.1.2 One-Dimensional Freezing from a Cold Boundary

Consider a plane boundary at z = 0, which is adjacent to a liquid at initial tem-
perature T = Tm, as shown in Figure 2.3. At t = 0, the boundary is impulsively
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10 2. Pure substances

Figure 2.3. Planar solidification from a cold boundary at z = 0 with temperature TB
into a warmer melt at temperature T∞. The interface between solid and liquid is at
z = h(t).

cooled to a temperature TB, such that the undercooling �T is

�T = Tm − TB > 0, (2.10)

creating a solid–liquid interface at z = h(t) and itwill be supposed thatρs = ρ�.

Because for t < 0, T = Tm, the temperature in the liquid will not fall below
Tm, hence, the temperature in the liquid is constant for all time,

T � = Tm z > h(t). (2.11a)

In the solid there is heat conduction

T s
t = κsT s

zz 0 < z < h(t). (2.11b)

For t > 0

T s = TB z = 0 (2.11c)

T � = T s = Tm z = h(t) (2.11d)

ρsLȧ = ks
TT

s
z z = h(t). (2.11e)

For t = 0,

T s = Tm, h = 0. (2.11f)

Note that the heat flux in the liquid is zero because the temperature there is
constant.

There are no natural time and space scales here, and therefore a similarity
solution can be sought. Let the new independent variable be η,

η = z

2
√

κst
, (2.12a)
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