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1
Boltzmann Equation and Gas–Surface Interaction

1.1. Introduction

According to kinetic theory, a gas in normal conditions (no chemical reactions,
no ionization phenomena, etc.) is formed of elastic molecules rushing hither
and thither at high speed, colliding and rebounding according to the laws of
elementary mechanics. In this and the next section, the molecules of a gas
will be assumed to be hard, elastic, and perfectly smooth spheres. Later we
shall consider molecules as centers of forces that move according to the laws
of classical mechanics and, starting with Chapter 6, more complex models
describing polyatomic molecules.

The rules generating the dynamics of many spheres are easy to describe:
Thus, for example, if no external forces, such as gravity, are assumed to act
on the molecules, each of them will move in a straight line unless it happens
to strike another molecule or a solid wall. The phenomena associated with this
dynamics are not so simple, especially when the number of spheres is large.
It turns out that this complication is always present when dealing with a gas,
because the number of molecules usually considered is extremely large: There
are about 2.7 · 1019 in a cubic centimeter of a gas at atmospheric pressure and
a temperature of 0◦C.

Given the vast number of particles to be considered, it would of course be
a hopeless task to attempt to describe the state of the gas by specifying the
so-called microscopic state (i.e., the position and velocity of every individ-
ual sphere); we must have recourse to statistics. A description of this kind is
made possible because in practice all that our typical observations can detect
are changes in the macroscopic state of the gas, described by quantities such
as density, bulk velocity, temperature, stresses, and heat flow, and these are
related to some suitable averages of quantities depending on the microscopic
state.

1
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2 1 Boltzmann Equation and Gas–Surface Interaction

1.2. The Boltzmann Equation

The exact dynamics ofN particles is a useful conceptual tool, but it cannot in
any way be used in practical calculations because it requires a huge number
of real variables (of the order of 1020). This was realized by Maxwell and
Boltzmann when they started to work with the one-particle probability density,
or distribution functionP(1)(x, ξ, t). The latter is a function of seven variables:
the components of the two vectorsx andξ and timet . In particular, Boltzmann
wrote an evolution equation forP(1) by means of a heuristic argument, which
we shall try to present in such a way as to show where extra assumptions are
introduced.

Let us first consider the meaning ofP(1)(x, ξ, t); it gives the probability
density of finding one fixed particle (say, the one labeled by 1) at a certain point
(x, ξ) of the six-dimensional reduced phase space associated with the position
and velocity of that molecule. To simplify the treatment, we shall for the moment
assume that the molecules are hard spheres, whose center has positionx. When
the molecules collide, momentum and kinetic energy must be conserved; thus
(Problem 1.2.2) the velocities after the impact,ξ′1 andξ′2, are related to those
before the impact,ξ1 andξ2, by

ξ′1 = ξ1− n[n · (ξ1− ξ2)],

ξ′2 = ξ2+ n[n · (ξ1− ξ2)], (1.2.1)

wheren is the unit vector alongξ1− ξ′1. Note that the relative velocity

V = ξ1− ξ2 (1.2.2)

satisfies

V′ = V − 2n(n · V), (1.2.3)

that is, it undergoes a specular reflection at the impact. This means that if we
split V at the point of impact into a normal componentVn, directed alongn
and a tangential componentVt (in the plane normal ton), thenVn changes sign
andVt remains unchanged in a collision (Problem 1.2.4). We can also say that
n bisects the directions ofV and−V′ = −(ξ′1− ξ′2) (see Fig. 1.1).

Let us remark that, in the absence of collisions,P(1) would remain unchanged
along the trajectory of a particle (see Problem 1.2.1). Accordingly we must
evaluate the effects of collisions on the time evolution ofP(1). Note that the
probability of occurrence of a collision is related to the probability of finding
another molecule with a center at exactly one diameter from the center of the
first one, whose distribution function isP(1). Thus, generally speaking, in order
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1.2 The Boltzmann Equation 3

Figure 1.1. The directions of the relative velocities before and after the impact are
bisected by the unit vectorn.

to write the evolution equation forP(1) we shall need another function,P(2),
that gives the probability density of finding, at timet , the first molecule at
x1 with velocity ξ1 and the second atx2 with velocity ξ2; obviously P(2) =
P(2)(x1, x2, ξ1, ξ2, t). HenceP(1) satisfies an equation of the following form:

∂P(1)

∂t
+ ξ1 ·

∂P(1)

∂x1
=G− L . (1.2.4)

HereLdx1dξ1dt gives the expected number of particles with position between
x1 andx1 + dx1 and velocity betweenξ1 andξ1 + dξ1 that disappear from
these ranges of values because of a collision in the time interval betweent and
t + dt, andGdx1dξ1dt gives the analogous number of particles entering the
same range in the same time interval. Counting these numbers is easy, provided
we use the trick of imagining particle 1 as a sphere at rest and endowed with
twice the actual diameterσ and the other particles to be point masses with
velocity (ξi − ξ1) = V i . In fact, each collision will send particle 1 out of
the above range and the number of the collisions of particle 1 will be the
number of expected collisions of any other particle with that sphere. Since
there are exactly(N − 1) identical point masses and multiple collisions are
disregarded,G = (N − 1)g and L = (N − 1)l , where the lowercase letters
indicate the contribution of a fixed particle, say particle 2. We shall then compute
the effect of the collisions of particle 2 with particle 1. Letx2 be a point of the
sphere such that the vector joining the center of the sphere withx2 is σn,
wheren is a unit vector. A cylinder with height|V · n|dt (where we write
just V for V2) and base areadS= σ 2dn (wheredn is the area of a surface
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Figure 1.2. Calculation of the number of collisions between two molecules.

element of the unit sphere aboutn) will contain the particles with velocityξ2

hitting the basedSin the time interval(t, t + dt) (see Fig. 1.2); its volume is
σ 2dn|V ·n|dt. Thus the number of collisions of particle 2 with particle 1 in the
ranges(x1, x1+ dx1), (ξ1, ξ1+ dξ1), (x2, x2+ dx2), (ξ2, ξ2+ dξ2), (t, t+ dt)
occuring at points ofdSis P(2)(x1, x2, ξ1, ξ2, t) dx1dξ1dξ2σ

2dn|V2 · n|dt. If
we want the number of collisions of particle 1 with 2, when the range of the
former is fixed but the latter may have any velocityξ2 and any positionx2 on the
sphere (i.e., anyn), we integrate over the sphere and all the possible velocities
of particle 2 to obtain

ldx1dξ1dt= dx1dξ1dt
∫

R3

∫
B−

P(2)(x1, x1+ σn, ξ1, ξ2, t)|V · n|σ 2dndξ2,

(1.2.5)

whereB− is the hemisphere corresponding toV · n< 0 (the particles are moving
toward each other before the collision). Thus we have the following result:

L = (N − 1)σ 2
∫

R3

∫
B−

P(2)(x1, x1+ σn, ξ1, ξ2, t)|(ξ2− ξ1) · n|dξ2dn.

(1.2.6)

The calculation of the gain termG is exactly the same as the one forL, except for
the fact that we have to integrate over the hemisphereB+, defined byV ·n > 0
(the particles are moving away from each other after the collision). Thus we have

G = (N − 1)σ 2
∫

R3

∫
B+

P(2)(x1, x1+ σn, ξ1, ξ2, t)|(ξ2− ξ1) · n|dξ2dn.

(1.2.7)

We thus could write the right-hand side of Eq. (1.2.4) as a single expression:

G− L = (N − 1)σ 2
∫

R3

∫
B

P(2)(x1, x1+ σn, ξ1, ξ2, t)(ξ2− ξ1) · ndξ2dn,

(1.2.8)
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where nowB is the entire unit sphere and we have abolished the bars of absolute
value in the right-hand side.

Equation (1.2.8), although absolutely correct, is not so useful. It turns out to
be much more convenient to keep the gain and loss terms separated. Only in
this way, in fact, can we insert in Eq. (1.2.4) the information that the probability
densityP(2) is continuous at a collision; in other words, although the velocities
of the particles undergo the discontinuous change described by Eqs. (1.2.1), we
can write

P(2)(x1, ξ1, x2, ξ2, t) = P(2)(x1, ξ1− n(n · V), x2, ξ2+ n(n · V), t)
if |x1− x2| = σ. (1.2.9)

For brevity, we write (in agreement with Eq. (1.2.1)

ξ′1 = ξ1− n(n · V), ξ′2 = ξ2+ n(n · V). (1.2.10)

Inserting Eq. (1.2.8) in Eq. (1.2.5) we thus obtain

G = (N − 1)σ 2
∫

R3

∫
B+

P(2)(x1, x1+ σn, ξ′1, ξ
′
2, t)|(ξ2− ξ1) · n|dξ2dn,

(1.2.11)

which is a frequently used form. Sometimesn is changed into−n to have the
same integration range as inL; the only change (in addition to the change in
the range) is in the second argument ofP(2), which becomesx1− σn.

At this point we are ready to understand Boltzmann’s argument.N is a very
large number andσ (expressed in common units, such as, e.g., centimeters)
is very small; to fix the ideas, let us consider a box whose volume is 1 cm3 at
room temperature and atmospheric pressure. ThenN ∼= 1020 andσ ∼= 10−8 cm.
Then(N−1)σ 2 ∼= Nσ 2 ∼= 104 cm2 = 1 m2 is a sizable quantity, while we can
neglect the difference betweenx1 andx1+ σn. This means that the equation to
be written can be rigorously valid only in the so-calledBoltzmann–Grad limit,
whenN →∞, σ → 0 with Nσ 2 finite.

In addition, the collisions between two preselected particles are rather rare
events. Thus two spheres that happen to collide can be thought to be two ran-
domly chosen particles and it makes sense to assume that the probability density
of finding the first molecule atx1 with velocityξ1 and the second atx2 with ve-
locity ξ2 is the product of the probability density of finding the first molecule at
x1 with velocityξ1 times the probability density of finding the second molecule
atx2 with velocityξ2. If we accept this we can write (assumption ofmolecular
chaos)

P(2)(x1, ξ1, x2, ξ2, t) = P(1)(x1, ξ1, t)P
(1)(x2, ξ2, t) (1.2.12)
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for two particles that are about to collide, or

P(2)(x1, ξ1, x1+ σn, ξ2, t) = P(1)(x1, ξ1, t)P
(1)(x1, ξ2, t)

for (ξ2− ξ1) · n < 0. (1.2.13)

Thus we can apply this recipe to the loss term (1.2.4) but not to the gain term
in the form (1.2.5). It is possible, however, to apply Eq. (1.2.13) (withξ′1, ξ

′
2 in

place ofξ1, ξ2) to the form (1.2.9) of the gain term, because the transformation
(1.2.10) maps the hemisphereB+ onto the hemisphereB−.

If we accept all the simplifying assumptions made by Boltzmann, we obtain
the following form for the gain and loss terms:

G= Nσ 2
∫

R3

∫
B−

P(1)(x1, ξ
′
1, t)P

(1)(x1, ξ
′
2, t)|(ξ2− ξ1) · n|dξ2dn, (1.2.14)

L = Nσ 2
∫

R3

∫
B−

P(1)(x1, ξ1, t)P
(1)(x1, ξ2, t)|(ξ2− ξ1) · n|dξ2dn. (1.2.15)

By inserting these expressions in Eq. (1.2.6) we can write theBoltzmann equa-
tion in the following form:

∂P(1)

∂t
+ ξ1 ·

∂P(1)

∂x1
= Nσ 2

∫
R3

∫
B−

[
P(1)(x1, ξ

′
1, t)P

(1)(x1, ξ
′
2, t)

− P(1)(x1, ξ1, t)P
(1)(x1, ξ2, t)

] |(ξ2− ξ1) · n|dξ2dn. (1.2.16)

We remark that the expressions forξ′1 andξ′2 given in Eq. (1.2.1) are by no
means the only possible ones. In fact we might use a different unit vectorω,
directed asV′, instead ofn. Then Eq. (1.2.1) is replaced by

ξ′1 = ξ +
1

2
|ξ1− ξ2|ω,

ξ′2 = ξ −
1

2
|ξ1− ξ2|ω, (1.2.17)

whereξ = 1
2(ξ1+ξ2) is the velocity of the center of mass. The relative velocity

V satisfies

V′ = ω|V|. (1.2.18)

The Boltzmann equation is an evolution equation forP(1), without any reference
to P(2). This is its main advantage. However, it has been obtained at the price of
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several assumptions; the chaos assumption present in Eqs. (1.2.12) and (1.2.13)
is particularly strong and requires discussion.

The molecular chaos assumption is clearly a property of randomness. In-
tuitively, one feels that collisions exert a randomizing influence, but it would
be completely wrong to argue that the statistical independence described by
Eq. (1.2.12) is a consequence of the dynamics. It is quite clear that we cannot
expect every choice of the initial distribution of positions and velocities of the
molecules to give aP(1) that agrees with the solution of the Boltzmann equation
in the Boltzmann–Grad limit. In other words molecular chaos must be present
initially and we can only ask whether it is preserved by the time evolution of
the system of hard spheres.

It is evident that the chaos property (1.2.12), if initially present, is almost
immediately destroyed, if we insist that it should be valid everywhere. In fact,
if it were strictly valid everywhere, the gain and loss terms, in the Boltzmann–
Grad limit, would be exactly equal. As a consequence, there would be no effect
of the collisions on the time evolution ofP(1). The essential point is that we
need the chaos property only for molecules that are about to collide, that is,
those in the precise form stated in Eq. (1.2.13). It is clear then that even if
P(1) as predicted by the exact dynamics converges nicely to a solution of the
Boltzmann equation,P(2) may converge to a product, as stated in Eq. (1.2.11),
only in a way that is in a certain sense very singular. In fact, it is not enough
to show that the convergence is almost everywhere, because we need to use
the chaos property in a zero measure set. However, we cannot try to show that
convergence holds everywhere, because this would be false; in fact, we have just
remarked that Eq. (1.2.11) is, generally speaking, simply not true for molecules
that have just collided.

How can we approach the question of justifying the Boltzmann equation
without invoking the molecular chaos assumption as an a priori hypothesis?
Clearly, sinceP(2) appears in the evolution equation forP(1), we must investi-
gate the time evolution forP(2); now, as is clear, the evolution equation forP(2)

contains another function,P(3), which depends on time and the coordinates
and velocities of three molecules and gives the probability density of finding,
at timet , the first molecule atx1 with velocityξ1, the second atx2 with velocity
ξ2, and the third atx3 with velocity ξ3. In general if we introduce a function
P(s) = P(s)(x1, x2, . . . , xs, ξ1, ξ2, . . . , ξs, t), the so-calleds-particle distribu-
tion function, which gives the probability density of finding, at timet , the first
molecule atx1 with velocityξ1, the second atx2 with velocityξ2, . . . and thesth
at xs with velocityξs, we find the evolution equation ofP(s) contains the next
function P(s+1), till we reachs= N; in fact P(N) satisfies a partial differential
equation called the Liouville equation. Clearly we cannot proceed unless we
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handle all theP(s) at the same time and attempt to prove a generalized form of
molecular chaos, that is,

P(s)(x1, x2, . . . , xs, ξ1, ξ2, . . . , ξs, t) =
s∏

j=1

P(1)(x j , ξ j , t). (1.2.19)

The task then becomes to show that, if true att = 0, this property remains
preserved (for any fixeds) in the Boltzmann–Grad limit. The discussion of
this point is outside the scope of this book. The interested reader may consult
Refs. 1–7.

There remains the problem of justifying theinitial chaos assumption, accord-
ing to which Eq. (1.2.19) is satisfied att = 0. One can give two justifications,
one of them being physical in nature and the second mathematical; essentially,
they say the same thing, that is, it is hard to prepare an initial state for which
Eq. (1.2.19) does not hold. The physical reason for this is that, in general, we
cannot handle every single molecule, but rather we act on the gas as a whole,
if we act at a macroscopic level, usually starting from an equilibrium state
(for which Eq. (1.2.19) holds). The mathematical argument indicates that if we
choose the initial data for the molecules at random, there is an overwhelming
probability that Eq. (1.2.19) is satisfied fort = 0.1,3

A word should be said about boundary conditions. When proving that chaos
is preserved in the limit, it is absolutely necessary to have a boundary condition
compatible (at least in the limit) with Eq. (1.2.19). If the boundary conditions
are those of periodicity or specular reflection, no problems arise. In general, it is
sufficient that the particles are scattered without adsorption from the boundary
in a way that does not depend on the state of the other molecules of the gas.1,3

Problems

1.2.1 Show that if there are no collisions (and no body forces), thenP(1)

satisfies

∂P(1)

∂t
+ ξ1 ·

∂P(1)

∂x1
= 0.

1.2.2 Show that Eqs. (1.2.1) hold. (Remark: Momentum and energy conser-
vation imply ξ1 + ξ2 = ξ′1 + ξ′2 and |ξ1|2 + |ξ2|2 = |ξ′1|2 + |ξ′2|2
and, by definition, we haveξ′1 = ξ1 − nC, whereC is a scalar to be
determined. . .).

1.2.3 Check that if we split the relative velocityV at the point of impact into
a normal componentVn, directed alongn, and a tangential component
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Vt (in the plane normal ton), thenVn changes sign andVt remains
unchanged in a collision.

1.2.4 Show that if we transform from the variablesξ1, ξ2 to the variablesV
(the relative velocity) andξ = 1

2(ξ1+ ξ2) (the velocity of the center of
mass), the transformation has unit Jacobian.

1.2.5 Check, by a direct calculation, that the Jacobian of the transformation
(1.2.1) is unity, if the collision occurs in a plane ( i.e.,ξ1, ξ2, ξ

′
1, and

ξ′2 have just two components, while the components ofn can be written
(cosθ, sinθ), whereθ is a suitable angle).

1.2.6 Check that the transformation (1.2.1) actually maps the hemisphereB+
ontoB−.

1.2.7 Find a relation between the angles formed byn andω with V.
1.2.8 Give a reasonable definition of probability for the initial data in terms of

P(N) and show that it attains a constrained maximum (the constraint
being that P(1) is assigned) whenP(N) is chaotic, that is, satisfies
Eq. (1.2.19) (withs= N andt = 0). (See Ref. 3.)

1.3. Molecules Different from Hard Spheres

In the previous section we discussed the Boltzmann equation when the molecules
are assumed to be identical hard spheres. There are several possible general-
izations of this molecular model; the most obvious is the case of molecules
that are identical point masses interacting with a central force – a good general
model for monatomic gases. If the range of the force extends to infinity, there
is a complication due to the fact that two molecules are always interacting and
the analysis in terms of “collisions” is no longer possible. If, however, the gas
is sufficiently dilute, we can take into account that the molecular interaction
is negligible for distances larger than a certainσ (the “molecular diameter”)
and assume that when two molecules are at a distance smaller thanσ , then
no other molecule is interacting with them and the binary collision analysis
considered in the previous section can be applied. The only difference arises
in the factorσ 2|(ξ2 − ξ1) · n|, which turns out to be replaced by a function of
V = |ξ2 − ξ1| and the angleθ betweenn andV (Refs. 1, 6, and 7). Thus the
Boltzmann equation for monatomic molecules takes on the following form:

∂P(1)

∂t
+ ξ1 ·

∂P(1)

∂x1
= N

∫
R3

∫
B−

[
P(1)(x1, ξ

′
1, t)P

(1)(x1, ξ
′
2, t)

− P(1)(x1, ξ1, t)P
(1)(x1, ξ2, t)

]
B(θ, |ξ2− ξ1|)dξ2dθdε, (1.3.1)

whereε is the other angle which, together withθ , identifies the unit vectorn.
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10 1 Boltzmann Equation and Gas–Surface Interaction

The functionB(θ,V) depends, of course, on the specific law of interaction
between the molecules. In the case of hard spheres, of course,

B(θ, |ξ2− ξ1|) = cosθ sinθ |ξ2− ξ1|. (1.3.2)

In spite of the fact that the force is cut at a finite rangeσ when writing the
Boltzmann equation, infinite range forces are frequently used. This has the dis-
advantage of making the integral in Eq. (1.3.1) rather hard to handle; in fact,
one cannot split it into the difference of two terms (the loss and the gain),
because each of them would be a divergent integral. This disadvantage is com-
pensated in the case of power-law forces, because one can separate the de-
pendence onθ from the dependence uponV . In fact, one can show1,6 that, if
the intermolecular force varies as thenth inverse power of the distance, then
(Problem 1.3.1)

B(θ, |ξ2− ξ1|) = β(θ)|ξ2− ξ1|
n−5
n−1 , (1.3.3)

whereβ(θ) is a nonelementary function ofθ (in the simplest cases it can be
expressed by elliptic functions). In particular, forn = 5 one has the so-called
Maxwell molecules, for which the dependence onV disappears.

Sometimes the artifice of cutting the grazing collisions corresponding to
small values of|θ − π/2| is used (angle cutoff). In this case one has both the
advantage of being able to split the collision term and of preserving a relation
of the form (1.3.3) for power-law potentials.

Since solving the Boltzmann equation with actual cross sections is compli-
cated, in many numerical simulations use is made of the so-called variable hard
sphere model in which the diameter of the spheres is an inverse power law
function of the relative speedV (see Chapter 7).

Another important case is that of a mixture rather than a single gas. In this
case we haven unknowns, ifn is the number of the species, andn Boltzmann
equations; in each of them there aren collision terms to describe the collision
of a molecule with other molecules of all the possible species.3

If the gas is polyatomic, then the gas molecules have other degrees of free-
dom in addition to the translation ones. This in principle requires using quantum
mechanics, but one can devise useful and accurate models in the classical frame-
work as well. Frequently the internal energyEi is the only additional variable
that is needed, in which case one can think of the gas as of a mixture of species,3

each differing from the other because of the value ofEi . If the latter variable is
discrete we obtain a strict analogy with a mixture; otherwise we have a contin-
uum of species. We remark that in both cases, kinetic energy is not preserved by
collisions, because internal energy also enters into the balance; this means that
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a molecule changes its “species” when colliding. This is the simplest example
of a “reacting collision,” which may be generalized to actual chemical species
when chemical reactions occur. The subject of mixtures and polyatomic gases
will be taken up again in Chapter 6.

Problem

1.3.1 Show that Eq. (1.3.3) holds (see Refs. 3 and 6).

1.4. Collision Invariants

Before embarking on a discussion of the properties of the solutions of the
Boltzmann equation we remark that the unknown of the latter is not always
chosen to be a probability density as we have done so far; it may be multiplied
by a suitable factor and transformed into an (expected) number density or
an (expected) mass density (in phase space, of course). The only thing that
changes is the factor in front of Eq. (1.3.1), which is no longerN. To avoid any
commitment to a special choice of that factor we replaceN B(θ,V) byB(θ,V)
and the unknownP by another letter,f (which is also the most commonly
used letter to denote the one-particle distribution function, no matter what its
normalization is). In addition, we replace the current velocity variableξ1 simply
by ξ andξ2 by ξ∗. Thus we rewrite Eq. (1.3.1) in the following form:

∂ f

∂t
+ ξ · ∂ f

∂x
=
∫

R3

∫
B−
( f ′ f ′∗ − f f∗)B(θ,V)dξ∗dθdε, (1.4.1)

whereV = |ξ − ξ∗|. The velocity argumentsξ′ andξ′∗ in f ′ and f ′∗ are of
course given by Eqs. (1.2.1) (or (1.2.16)) with the suitable modification.

The right-hand side of Eq. (1.4.1) contains a quadratic expressionQ( f, f ),
given by

Q( f, f ) =
∫

R3

∫
B−
( f ′ f ′∗ − f f∗)B(θ,V)dξ∗dθdε. (1.4.2)

This expression is called the collision integral or, simply, the collision term; the
quadratic operatorQ goes under the name of collision operator. In this section
we study some elementary properties ofQ. It actually turns out to be more
convenient to study the slightly more general bilinear expression associated
with Q( f, f ), that is,

Q( f, g) = 1

2

∫
R3

∫
B−
( f ′g′∗ + g′ f∗ − f g∗ − g f∗)B(θ,V)dξ∗dθdε. (1.4.3)
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It is clear that wheng = f , Eq. (1.4.3) reduces to Eq. (1.4.2) and

Q( f, g) = Q(g, f ). (1.4.4)

Our first aim is to study the eightfold integral:∫
R3

Q( f, g)φ(ξ)dξ

= 1

2

∫
R3

∫
R3

∫
B−
( f ′g′∗ + g′ f ′∗ − f g∗ − g f∗)φ(ξ)B(θ,V)dξ∗dξdθdε,

(1.4.5)

where f, g, andφ are functions such that the indicated integrals exist and the
order of integration does not matter. A simple interchange of the starred and
unstarred variables (with a glance at Eqs. (1.2.1)) shows that∫

R3
Q( f, g)φ(ξ)dξ

= 1

2

∫
R3

∫
R3

∫
B−
( f ′g′∗ + g′ f ′∗ − f g∗ − g f∗)φ(ξ∗)B(θ,V)dξ∗dξdθdε.

(1.4.6)

Next, we consider another transformation of variables, the exchange of primed
and unprimed variables (which is possible because the transformation in
Eq. (1.2.1) is linear and its own inverse, for any fixedn). This gives∫

R3
Q( f, g)φ(ξ)dξ

= 1

2

∫
R3

∫
R3

∫
B−
( f g∗ + g f∗ − f ′g′∗ − g′ f∗)φ(ξ′)B(θ,V)dξ′∗dξ

′dθdε.

(1.4.7)

(Actually sinceV′ · n = −V · n we should writeB− in place ofB+; changing
n into−n, however, gives exactly the expression written here.)

The absolute value of the Jacobian fromξ, ξ∗ toξ′, ξ′∗ is unity (see Problems
1.2.4 and 1.2.5); thus we can writedξ dξ∗ in place ofdξ′ dξ′∗ and Eq. (1.4.7)
becomes∫

R3
Q( f, g)φ(ξ)dξ

= 1

2

∫
R3

∫
R3

∫
B−
( f g∗ + g f∗ − f ′g′∗ − g′ f ′∗)φ(ξ

′)B(θ,V)dξ∗dξdθdε.

(1.4.8)
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Finally, we can interchange the starred and unstarred variables in Eq. (1.4.8) to
find∫

R3
Q( f, g)φ(ξ)dξ

= 1

2

∫
R3

∫
R3

∫
B−
( f g∗ + g f∗ − f ′g′∗ − g′ f ′∗)φ(ξ

′
∗)B(θ,V)dξ∗dξdθdε.

(1.4.9)

Equations (1.4.6), (1.4.8), and (1.4.9) differ from Eq. (1.4.5) because the factor
φ(ξ) is replaced byφ(ξ∗),−φ(ξ′), and−φ(ξ∗) respectively. We can now
obtain more expressions for the integral in the left-hand side by taking linear
combinations of the four different expressions available. Among them, the
most interesting one is the symmetric expression obtained by taking the sum of
Eqs. (1.4.5), (1.4.6), (1.4.8), and (1.4.9) and dividing by four. The result is∫

R3
Q( f, g)φ(ξ)dξ = 1

8

∫
R3

∫
R3

∫
B−
( f ′g′∗ + g′ f ′∗ − f g∗ − g f∗)

× (φ + φ∗ − φ′ − φ′∗)B(θ,V)dξ∗dξdθdε. (1.4.10)

This relation expresses a basic property of the collision term, which is frequently
used. In particular, wheng = f , Eq. (1.4.10) reads∫

R3
Q( f, f )φ(ξ)dξ

= 1

4

∫
R3

∫
R3

∫
B−
( f ′ f ′∗ − f f∗)(φ + φ∗ − φ′ − φ′∗)B(θ,V)|dξ∗dξdθdε.

(1.4.11)

We remark that the following form also holds:∫
R3

Q( f, f )φ(ξ)dξ= 1

2

∫
R3

∫
R3

∫
B−

f f∗(φ′ +φ′∗φ−φ∗)B(θ,V)dξ∗dξdθdε.

(1.4.12)

In fact, the integral in Eq. (1.4.11) can be split into the difference of two integrals
(one containingf ′ f ′∗; the other f f∗); the two integrals are just the opposite of
each other, as an exchange between primed and unprimed variables shows, and
Eq. (1.4.12) holds.

We now observe that the integral in Eq. (1.4.10) is zero independent of the
particular functionsf andg, if

φ + φ∗ = φ′ + φ′∗ (1.4.13)
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is valid almost everywhere in velocity space. Because the integral appearing in
the left-hand side of Eq. (1.4.11) is the rate of change of the average value of
the functionφ due to collisions, the functions satisfying Eq. (1.4.13) are called
“collision invariants.” It can be shown (see, e.g., Ref. 3 and Problems 1.4.1–
1.4.6) that a continuous functionφ has the property expressed by Eq. (1.4.13)
if and only if

φ(ξ) = a+ b · ξ + c|ξ|2, (1.4.14)

wherea andc are constant scalars andb a constant vector. The assumption of
continuitycanbeconsiderablyrelaxed.8−10Thefunctionsψ0=1, (ψ1, ψ2, ψ3)=
ξ, ψ4 = |ξ|2 are usually called the elementary collision invariants; they span
the five-dimensional subspace of the collision invariants.

Thus, in summary, a collision invariant is a functionφ such that∫
R3
φ(ξ)Q( f, g)dξ = 0, (1.4.15)

and the most general expression of a collision invariant is given by Eq. (1.4.14)

Problems

1.4.1 Show that ifx is a vector in ann-dimensional vector spaceEn and f (x)
a function continuous in at least one point and satisfyingf (x)+ f (y) =
f (x + y) for anyx, y∈ En, then f (x) = A · x, whereA is a constant
vector. (Hint: Show thatf is actually continuous everywhere and satis-
fies f (r x) = r f (x) for any integerr ; extend this property to any rational
and then to any realr ; then use a basis inEn; see Refs. 3 and 6.)

1.4.2 Show that the even part of a functionφ satisfying Eq. (1.4.13) is a
function of|ξ|2 alone (Hint:φ+φ∗ is constant if and only ifξ+ ξ∗ and
|ξ|2+ |ξ∗|2 are constant andξ + ξ∗ vanishes forξ∗ = −ξ).

1.4.3 Show that the even part of a continuous function satisfying Eq. (1.4.13)
has the forma+ c|ξ|2, wherea andc are constants. (Hint: Leta = φ(0)
and use the results of the two previous problems.)

1.4.4 Show that ifξ andξ∗ are orthogonal then the odd part of a collision
invariantφ satisfiesφ(ξ)+ φ(ξ∗) = φ(ξ + ξ∗).

1.4.5 Extend the result of the previous problem to a pair of vectorsξ andξ∗, not
necessarily orthogonal. (Hint: Consider another vectorξo orthogonal to
both of them with magnitude|ξ∗ · ξ|1/2 and consider the vectorsξ+ ξo,
ξ∗ ± ξo, to which the result of the previous problem applies.)

1.4.6 Apply the results of Problems 1.4.1 and 1.4.5 to show that the odd part of
a collision invariant, if continuous inξ, must have the formb · ξ where
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b is a constant vector, so that, because of the result of Problem 1.4.3 a
collision invariant must have the form shown in Eq. (1.4.14).

1.5. The Boltzmann Inequality and the Maxwell Distributions

In this section we investigate the existence of positive functionsf that give a
vanishing collision integral:

Q( f, f ) =
∫

R3

∫
B−
( f ′ f ′∗ − f f∗)B(θ,V)dξ∗dθdε = 0. (1.5.1)

To solve this equation, we prove a preliminary result, which plays an important
role in the theory of the Boltzmann equation: Iff is a nonnegative function such
that log f Q( f, f ) is integrable and the manipulations of the previous section
hold whenφ = log f , then theBoltzmann inequality∫

R3
log f Q( f, f )dξ ≤ 0 (1.5.2)

holds; further, the equality sign applies if, and only if, logf is a collision
invariant, or, equivalently,

f = exp(a+ b · ξ + c|ξ|2). (1.5.3)

To prove Eq. (1.5.2) it is enough to use Eq. (1.4.11) withφ = log f :∫
R3

log f Q( f, f )dξ = 1

4

∫
R3

∫
B−

log( f f∗/ f ′ f ′∗)( f ′ f ′∗− f f∗)B(θ,V)dξdξ∗dε,

(1.5.4)
and Eq. (1.5.2) follows thanks to the elementary inequality

(z− y) log(y/z) ≤ 0 (y, z ∈ R+). (1.5.5)

Equation (1.5.5) becomes an equality if and only ify = z; thus the equality
sign holds in Eq. (1.5.2) if and only if

f ′ f ′∗ = f f∗ (1.5.6)

applies almost everywhere. But, taking the logarithms of both sides of
Eq. (1.5.6), we find thatφ = log f satisfies Eq. (1.4.13) and is thus given
by Eq. (1.4.14). The functionf = exp(φ) is then given by Eq. (1.5.3).

We remark that in the latter equationc must be negative, sincef must be
integrable. If we letc = −β andb = 2βv (wherev is another constant vector)
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Eq. (1.5.3) can be rewritten as follows:

f = Aexp(−β|ξ − v|2), (1.5.7)

whereA is a positive constant related toa, c, and|b|2 (β, v, and A constitute
a new set of constants). The function appearing in Eq. (1.2.7) is theMaxwell
distributionor Maxwellian. Frequently one considers Maxwellians withv = 0
(nondrifting Maxwellians), which can be obtained from drifting Mawellians by
a change of the origin in velocity space.

Let us return now to the problem of solving Eq. (1.5.1). Multiplying both
sides by log f and integrating gives Eq. (1.5.2) with the equality sign. This
implies that f is a Maxwellian, by the result that has just been proved. Suppose
now that f is a Maxwellian; thenf = exp(φ), whereφ is a collision invariant
and Eq. (1.5.6) holds; Eq. (1.5.1) then also holds. Thus there are functions that
satisfy Eq. (1.5.1) and they are all Maxwellians, Eq. (1.5.7).

Problem

1.5.1 Prove (1.5.5).

1.6. The Macroscopic Balance Equations

In this section we compare the microscopic description supplied by kinetic
theory with the macroscopic description supplied by continuum gas dynamics.
For definiteness, in this sectionf will be assumed to be an expected mass
density in phase space. To obtain a density,ρ = ρ(x, t), in ordinary space, we
must integratef with respect toξ:

ρ =
∫

R3
f dξ. (1.6.1)

The bulk velocityv of the gas (e.g., the velocity of a wind) is the average of
the molecular velocitiesξ at a certain pointx and time instantt ; since f is
proportional to the probability for a molecule to have a given velocity,v is
given by

v =
∫

R3ξ f dξ∫
R3 f dξ

(1.6.2)

(the denominator is required even iff is taken to be a probability density in
phase space, because we are considering a conditional probability, referring to
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the positionx). Equation (1.6.2) can also be written as follows:

ρv =
∫

R3
ξ f dξ, (1.6.3)

or, using components,

ρvi =
∫

R3
ξi f dξ (i = 1, 2, 3). (1.6.4)

The bulk velocityv is what we can directly perceive of the molecular motion
by means of macroscopic observations; it is zero for a gas in equilibrium in a
box at rest. Each molecule has its own velocityξ, which can be decomposed
into the sum ofv and another velocity

c= ξ − v (1.6.5)

called the random or peculiar velocity;c is clearly due to the deviations ofξ
from v. It is also clear that the average ofc is zero (Problem 1.6.1).

The quantityρvi that appears in Eq. (1.6.4) is thei th component of the mass
flow or, alternatively, of the momentum density of the gas. Other quantities of
similar nature are: the momentum flow

mi j =
∫

R3
ξi ξ j f dξ (i, j = 1, 2, 3); (1.6.6)

the energy density per unit volume:

w = 1

2

∫
R3
|ξ|2 f dξ; (1.6.7)

and the energy flow:

ri = 1

2

∫
R3
ξi |ξ|2 f dξ (i, j = 1, 2, 3). (1.6.8)

Equation (1.6.8) shows that the momentum flow is described by the components
of a symmetric tensor of second order, because we must describe the flow in
thei th direction of thej th component of momentum. It is to be expected that in
a macroscopic description only a part of this tensor will be identified as a bulk
momentum flow, because, in general,mi j will be different from zero even in
the absence of a macroscopic motion(v = 0). It is thus convenient to reexpress
the integral inmi j in terms ofc andv. Then we have (Problem 1.6.2)

mi j = ρvi v j + pi j , (1.6.9)
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where

pi j =
∫

R3
ci cj f dξ (i, j = 1, 2, 3) (1.6.10)

plays the role of the stress tensor (because the microscopic momentum flow
associated with it is equivalent to forces distributed on the boundary of any
region of gas, according to the macroscopic description).

Similarly one has

w = 1

2
ρ |v|2+ ρe, (1.6.11)

wheree is the internal energy per unit mass (associated with random motions)
defined by

ρe= 1

2

∫
R3
|c|2 f dξ, (1.6.12)

and (Problem 1.6.3)

ri = ρvi

(
1

2
|v|2+ e

)
+

3∑
j=1

v j pi j + qi (i = 1, 2, 3) , (1.6.13)

whereqi are the components of the so-called heat flow vector:

qi = 1

2

∫
3

ci |c|2 f dξ. (1.6.14)

The decomposition in Eq. (1.6.13) shows that the microscopic energy flow is
a sum of a macroscopic flow of energy (both kinetic and internal), of the work
(per unit area und unit time) done by stresses, and of the heat flow.

To complete the connection, as a simple mathematical consequence of the
Boltzmann equation, one can derive five differential relations satisfied by the
macroscopic quantities introduced above; these relations describe the balance
of mass, momentum, and energy and have the same form as in continuum
mechanics. To this end let us consider the Boltzmann equation

∂ f

∂t
+ ξ · ∂ f

∂x
= Q( f, f ). (1.6.15)

If we multiply both sides by one of the elementary collision invariants
ψα (α = 0, 1, 2, 3, 4), defined in Section 1.4, and integrate with respect to
ξ, we have, thanks to Eq. (1.1.15) withg = f andφ = ψα:∫

R3
ψα(ξ)Q( f, f )dξ = 0, (1.6.16)


