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Boltzmann Equation and Gas—Surface Interaction

1.1. Introduction

According to kinetic theory, a gas in normal conditions (no chemical reactions,
no ionization phenomena, etc.) is formed of elastic molecules rushing hither
and thither at high speed, colliding and rebounding according to the laws of
elementary mechanics. In this and the next section, the molecules of a gas
will be assumed to be hard, elastic, and perfectly smooth spheres. Later we
shall consider molecules as centers of forces that move according to the laws
of classical mechanics and, starting with Chapter 6, more complex models
describing polyatomic molecules.

The rules generating the dynamics of many spheres are easy to describe:
Thus, for example, if no external forces, such as gravity, are assumed to act
on the molecules, each of them will move in a straight line unless it happens
to strike another molecule or a solid wall. The phenomena associated with this
dynamics are not so simple, especially when the number of spheres is large.
It turns out that this complication is always present when dealing with a gas,
because the number of molecules usually considered is extremely large: There
are about Z - 10*°in a cubic centimeter of a gas at atmospheric pressure and
a temperature of0C.

Given the vast number of particles to be considered, it would of course be
a hopeless task to attempt to describe the state of the gas by specifying the
so-called microscopic state (i.e., the position and velocity of every individ-
ual sphere); we must have recourse to statistics. A description of this kind is
made possible because in practice all that our typical observations can detect
are changes in the macroscopic state of the gas, described by quantities such
as density, bulk velocity, temperature, stresses, and heat flow, and these are
related to some suitable averages of quantities depending on the microscopic
state.
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1.2. The Boltzmann Equation

The exact dynamics dfl particles is a useful conceptual tool, but it cannot in
any way be used in practical calculations because it requires a huge number
of real variables (of the order of 8). This was realized by Maxwell and
Boltzmann when they started to work with the one-particle probability density,
or distribution functionP@ (x, &, t). The latter is a function of seven variables:

the components of the two vectoreindé and timet. In particular, Boltzmann
wrote an evolution equation fd?® by means of a heuristic argument, which

we shall try to present in such a way as to show where extra assumptions are
introduced.

Let us first consider the meaning &Y (x, &, t); it gives the probability
density of finding one fixed particle (say, the one labeled by 1) at a certain point
(%, &) of the six-dimensional reduced phase space associated with the position
and velocity of that molecule. To simplify the treatment, we shall for the moment
assume that the molecules are hard spheres, whose center has po¥itimn
the molecules collide, momentum and kinetic energy must be conserved; thus
(Problem 1.2.2) the velocities after the impagitand&, are related to those
before the impact, andg,, by

& =& —nn- (& — &)l

& =6 +n[n- (& —8&). (1.2.1)
wheren is the unit vector along; — &;. Note that the relative velocity
V=¢ ¢ (1.2.2)
satisfies
V' =V -2n(n-V), (1.2.3)

that is, it undergoes a specular reflection at the impact. This means that if we
split vV at the point of impact into a normal componahi, directed alongn

and a tangential componevit (in the plane normal ta), thenV,, changes sign
andV; remains unchanged in a collision (Problem 1.2.4). We can also say that
n bisects the directions &f and—V’' = —(&] — &) (see Fig. 1.1).

Let us remark that, in the absence of collisioRS would remain unchanged
along the trajectory of a particle (see Problem 1.2.1). Accordingly we must
evaluate the effects of collisions on the time evolutionPéP. Note that the
probability of occurrence of a collision is related to the probability of finding
another molecule with a center at exactly one diameter from the center of the
first one, whose distribution function B . Thus, generally speaking, in order
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Figure 1.1. The directions of the relative velocities before and after the impact are
bisected by the unit vectar.

to write the evolution equation fdP® we shall need another functioR,?,
that gives the probability density of finding, at tinhethe first molecule at
X1 with velocity £, and the second at, with velocity &,; obviously P@ =
P®@(x1, X2, &1, €5, ). HenceP Y satisfies an equation of the following form:

IPW IPD
TR

=G-L. (1.2.4)

HereL dx;d&,dt gives the expected number of particles with position between
X1 andx; + dx; and velocity betwee, and&; + d¢, that disappear from
these ranges of values because of a collision in the time interval betveseh

t + dt, andGdx,d¢,dt gives the analogous number of particles entering the
same range in the same time interval. Counting these numbers is easy, provided
we use the trick of imagining particle 1 as a sphere at rest and endowed with
twice the actual diameter and the other particles to be point masses with
velocity (¢ — &;) = V. In fact, each collision will send particle 1 out of
the above range and the number of the collisions of particle 1 will be the
number of expected collisions of any other particle with that sphere. Since
there are exactlyN — 1) identical point masses and multiple collisions are
disregardedc = (N — 1)g andL = (N — 1)I, where the lowercase letters
indicate the contribution of a fixed particle, say particle 2. We shall then compute
the effect of the collisions of particle 2 with particle 1. betbe a point of the
sphere such that the vector joining the center of the spherexyith on,
wheren is a unit vector. A cylinder with heighfv - n|dt (where we write
justV for V,) and base aredS = o2dn (wheredn is the area of a surface
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n

N Xy

Figure 1.2. Calculation of the number of collisions between two molecules.

element of the unit sphere abautwill contain the particles with velocitg.,
hitting the basa&lSin the time intervakt, t + dt) (see Fig. 1.2); its volume is
o?dn|V - n|dt. Thus the number of collisions of particle 2 with particle 1 in the

rangesxy, Xy +dxy), (&1, 1+ dEy), (X2, X2+ dX2), (&, €,+dEy), (t, t+dt)
occuring at points oflSis P@ (xq, Xo, &1, &5, t) dx1d€,d€,02dn|V; - n|dt. If

we want the number of collisions of particle 1 with 2, when the range of the
former is fixed but the latter may have any velo@sand any position, on the
sphere (i.e., ang), we integrate over the sphere and all the possible velocities
of particle 2 to obtain

ldxldsldtzdxldgldt/ / P@(x1, X1+ 0N, &, &, 1|V - njo?dndé,,
3 —
A (1.2.5)

whereB~ is the hemisphere corresponding/ten < 0 (the particles are moving
toward each other before the collision). Thus we have the following result:

L=(N- 1>02/ : / PO, X1+ 0, &1, £, DI(E — €1) - nldéydn.
A (1.2.6)

The calculation of the gain terfais exactly the same as the one Egiexcept for
the fact that we have to integrate over the hemispBeredefined byv -n > 0
(the particles are moving away from each other after the collision). Thus we have

G=(N-1o? [ [ PP0uxs+on €. 6.01E &) nidn
R® JB+
(1.2.7)
We thus could write the right-hand side of Eq. (1.2.4) as a single expression:

G-L=(N- 1)02/ / P@(x1, X1 + o, &, &, )&, — &) - nd,dn,
ReB (1.2.8)
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where nows is the entire unit sphere and we have abolished the bars of absolute
value in the right-hand side.

Equation (1.2.8), although absolutely correct, is not so useful. It turns out to
be much more convenient to keep the gain and loss terms separated. Only in
this way, in fact, can we insertin Eq. (1.2.4) the information that the probability
densityP@ is continuous at a collision; in other words, although the velocities
of the particles undergo the discontinuous change described by Egs. (1.2.1), we
can write

P@(x1, &1, %2, €5, 1) = PP (x4, &, — n(N - V), Xp, &, + (N - V), 1)
if X1 — X2| = 0. (129)

For brevity, we write (in agreement with Eq. (1.2.1)
gL =& —n(n-V), & =& +n(n-V). (1.2.10)

Inserting Eqg. (1.2.8) in Eq. (1.2.5) we thus obtain

G=(N-10? [ [ PP0uxs+on €€, 01E - &) nidén
o (1.2.11)
which is a frequently used form. Sometimess changed inte-n to have the
same integration range as in the only change (in addition to the change in
the range) is in the second argumenfs®, which becomes; — on.

At this point we are ready to understand Boltzmann's argumisrig.a very
large number and (expressed in common units, such as, e.g., centimeters)
is very small; to fix the ideas, let us consider a box whose volume is*latm
room temperature and atmospheric pressure. Thén10?°ando = 10~8cm.
Then(N —1)0? = No? = 10%cm? = 1 n¥ is a sizable quantity, while we can
neglect the difference betwegpandx; + on. This means that the equation to
be written can be rigorously valid only in the so-calBoltzmann—Grad limijt
whenN — oo, o — 0 with No 2 finite.

In addition, the collisions between two preselected particles are rather rare
events. Thus two spheres that happen to collide can be thought to be two ran-
domly chosen particles and it makes sense to assume that the probability density
of finding the first molecule at; with velocity £, and the second ab with ve-
locity &, is the product of the probability density of finding the first molecule at
x1 with velocity &, times the probability density of finding the second molecule
atx, with velocity &,. If we accept this we can write (assumptiomadlecular
chaog

P@(x1, &1, X2, €5, 1) = PP (xq, &, )PP (X2, €5, 1) (1.2.12)
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for two particles that are about to collide, or

P@(x1, &1, X1 +on, €y, 1) = PO (xq, &1, )PP (xq, €5, 1)
for (&, —€)-n<0. (1.2.13)

Thus we can apply this recipe to the loss term (1.2.4) but not to the gain term
in the form (1.2.5). It is possible, however, to apply Eq. (1.2.13) (§ith¢5 in
place of¢,, &,) to the form (1.2.9) of the gain term, because the transformation
(1.2.10) maps the hemispheBe onto the hemispher8~.

If we accept all the simplifying assumptions made by Boltzmann, we obtain
the following form for the gain and loss terms:

G=No? / / PO (xy, &}, )P (x4, £, DIE, — &) - nIdE,dn,  (1.2.14)
R3.J B~

L= No? /R 3 / PO kg, £, HPY (xa, £, DI(E — £) - nldEzdn.  (1.2.15)

By inserting these expressions in Eqg. (1.2.6) we can writ&tizmann equa-
tion in the following form:

aPW aPW
+£

— PP (x1, &, HPP (X1, &, 1] (6o — €1 -nldépdn.  (1.2.16)

We remark that the expressions #r and &, given in Eq. (1.2.1) are by no
means the only possible ones. In fact we might use a different unit vegtor
directed a¥/’, instead oh. Then Eq. (1.2.1) is replaced by

1
E1=6+ §|£1 —&lw,

1
5161 — &lw, (1.2.17)

G§=F

where§ = %(51 +&,) isthe velocity of the center of mass. The relative velocity
V satisfies

V' = w|V|. (1.2.18)

The Boltzmann equation is an evolution equation®6? , without any reference
to P@. This is its main advantage. However, it has been obtained at the price of
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several assumptions; the chaos assumption presentin Egs. (1.2.12) and (1.2.13)
is particularly strong and requires discussion.

The molecular chaos assumption is clearly a property of randomness. In-
tuitively, one feels that collisions exert a randomizing influence, but it would
be completely wrong to argue that the statistical independence described by
Eqg. (1.2.12) is a consequence of the dynamics. It is quite clear that we cannot
expect every choice of the initial distribution of positions and velocities of the
molecules to give # that agrees with the solution of the Boltzmann equation
in the Boltzmann—Grad limit. In other words molecular chaos must be present
initially and we can only ask whether it is preserved by the time evolution of
the system of hard spheres.

It is evident that the chaos property (1.2.12), if initially present, is almost
immediately destroyed, if we insist that it should be valid everywhere. In fact,
if it were strictly valid everywhere, the gain and loss terms, in the Boltzmann—
Grad limit, would be exactly equal. As a consequence, there would be no effect
of the collisions on the time evolution &®. The essential point is that we
need the chaos property only for molecules that are about to collide, that is,
those in the precise form stated in Eqg. (1.2.13). It is clear then that even if
P® as predicted by the exact dynamics converges nicely to a solution of the
Boltzmann equationP?® may converge to a product, as stated in Eq. (1.2.11),
only in a way that is in a certain sense very singular. In fact, it is not enough
to show that the convergence is almost everywhere, because we need to use
the chaos property in a zero measure set. However, we cannot try to show that
convergence holds everywhere, because this would be false; in fact, we have just
remarked that Eq. (1.2.11) is, generally speaking, simply not true for molecules
that have just collided.

How can we approach the question of justifying the Boltzmann equation
without invoking the molecular chaos assumption as an a priori hypothesis?
Clearly, sinceP® appears in the evolution equation 0fY, we must investi-
gate the time evolution fdP®; now, as is clear, the evolution equation ff¥
contains another functior®, which depends on time and the coordinates
and velocities of three molecules and gives the probability density of finding,
at timet, the first molecule at; with velocity &,, the second at, with velocity
&5, and the third ak; with velocity £5. In general if we introduce a function
PO = PO (xg, Xp, ..., Xs, &1, &5, . .., &6, 1), the so-calleds-particle distribu-
tion function which gives the probability density of finding, at tihethe first
molecule ak; with velocity &, the second at, with velocity&,, . . . and thesth
atxs with velocity &, we find the evolution equation ¢ contains the next
function PS*+Y ill we reachs = N; in fact PN satisfies a partial differential
equation called the Liouville equation. Clearly we cannot proceed unless we



8 1 Boltzmann Equation and Gas—Surface Interaction

handle all theP® at the same time and attempt to prove a generalized form of
molecular chaos, that is,

S
POXL Xa, ... X €1, €pr - €6 ) = [[ PP XL €5 1), (1.2.19)
j=1

The task then becomes to show that, if true at O, this property remains
preserved (for any fixed) in the Boltzmann—Grad limit. The discussion of
this point is outside the scope of this book. The interested reader may consult
Refs. 1-7.

There remains the problem of justifying timitial chaos assumptigraccord-
ing to which Eq. (1.2.19) is satisfied tat= 0. One can give two justifications,
one of them being physical in nature and the second mathematical; essentially,
they say the same thing, that is, it is hard to prepare an initial state for which
Eqg. (1.2.19) does not hold. The physical reason for this is that, in general, we
cannot handle every single molecule, but rather we act on the gas as a whole,
if we act at a macroscopic level, usually starting from an equilibrium state
(for which Eq. (1.2.19) holds). The mathematical argument indicates that if we
choose the initial data for the molecules at random, there is an overwhelming
probability that Eq. (1.2.19) is satisfied foe= 0.1:3

A word should be said about boundary conditions. When proving that chaos
is preserved in the limit, it is absolutely necessary to have a boundary condition
compatible (at least in the limit) with Eq. (1.2.19). If the boundary conditions
are those of periodicity or specular reflection, no problems arise. In general, itis
sufficient that the particles are scattered without adsorption from the boundary
in a way that does not depend on the state of the other molecules of thé gas.

Problems

1.2.1 Show that if there are no collisions (and no body forces), téh
satisfies

JPD IPW
at +'1‘am -

1.2.2 Show that Egs. (1.2.1) hold. (Remark: Momentum and energy conser-
vation imply §; + &, = &) + & and [£,7 + 1&,7 = (€11 + 1&5)?
and, by definition, we havg; = &, — nC, whereC is a scalar to be
determined. .).

1.2.3 Check that if we split the relative velochyat the point of impact into
a normal componen{,, directed alongn, and a tangential component
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V, (in the plane normal tam), thenV, changes sign andl; remains
unchanged in a collision.

1.2.4 Show that if we transform from the variablgs &, to the variables/

(the relative velocity) angd = %(!;“1 + &,) (the velocity of the center of
mass), the transformation has unit Jacobian.

1.2.5 Check, by a direct calculation, that the Jacobian of the transformation
(1.2.1) is unity, if the collision occurs in a plane (.6, &, &7, and
&, have just two components, while the components ¢én be written
(cos9, sing), wheref is a suitable angle).

1.2.6 Check that the transformation (1.2.1) actually maps the hemisfhere
ontoB~.

1.2.7 Find arelation between the angles formed laydw with V.

1.2.8 Give areasonable definition of probability for the initial data in terms of
PM) and show that it attains a constrained maximum (the constraint
being thatP® is assigned) wheP™) is chaotic, that is, satisfies
Eqg. (1.2.19) (withs = N andt = 0). (See Ref. 3.)

1.3. Molecules Different from Hard Spheres

In the previous section we discussed the Boltzmann equation when the molecules
are assumed to be identical hard spheres. There are several possible general-
izations of this molecular model; the most obvious is the case of molecules
that are identical point masses interacting with a centrakfera good general
model for monatomic gases. If the range of the force extends to infinity, there
is a complication due to the fact that two molecules are always interacting and
the analysis in terms of “collisions” is no longer possible. If, however, the gas

is sufficiently dilute, we can take into account that the molecular interaction

is negligible for distances larger than a certaitfthe “molecular diameter”)

and assume that when two molecules are at a distance smalles thhan

no other molecule is interacting with them and the binary collision analysis
considered in the previous section can be applied. The only difference arises
in the factoro?| (€, — &) - n|, which turns out to be replaced by a function of

V =&, — &,| and the angl® betweem andV (Refs. 1, 6, and 7). Thus the
Boltzmann equation for monatomic molecules takes on the following form:

JpD IpD
: =N PD(xq, &1, )PP (xq, &), t
at 1 3X1 /R3/B,[ (151) (152)

— PO (xq, &, )PP (xq, &, t)] B(0, 1§, — £11)d&,dode, (1.3.1)

wheree is the other angle which, together wiihidentifies the unit vecton.
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The functionB(6, V) depends, of course, on the specific law of interaction
between the molecules. In the case of hard spheres, of course,

B(6, |&, — &;]) = cosd sind|&, — &, (1.3.2)

In spite of the fact that the force is cut at a finite rargevhen writing the
Boltzmann equation, infinite range forces are frequently used. This has the dis-
advantage of making the integral in Eq. (1.3.1) rather hard to handle; in fact,
one cannot split it into the difference of two terms (the loss and the gain),
because each of them would be a divergent integral. This disadvantage is com-
pensated in the case of power-law forces, because one can separate the de-
pendence of from the dependence upan In fact, one can show that, if

the intermolecular force varies as thth inverse power of the distance, then
(Problem 1.3.1)

n—

B0, 1€, — £41]) = BO)|&, — &40, (1.3.3)

where(9) is a nonelementary function @f (in the simplest cases it can be
expressed by elliptic functions). In particular, for= 5 one has the so-called
Maxwell molecules, for which the dependence\bulisappears.

Sometimes the artifice of cutting the grazing collisions corresponding to
small values of6 — 7 /2] is used (angle cutoff). In this case one has both the
advantage of being able to split the collision term and of preserving a relation
of the form (1.3.3) for power-law potentials.

Since solving the Boltzmann equation with actual cross sections is compli-
cated, in many numerical simulations use is made of the so-called variable hard
sphere model in which the diameter of the spheres is an inverse power law
function of the relative speed (see Chapter 7).

Another important case is that of a mixture rather than a single gas. In this
case we have unknowns, ifn is the number of the species, andoltzmann
equations; in each of them there areollision terms to describe the collision
of a molecule with other molecules of all the possible speties.

If the gas is polyatomic, then the gas molecules have other degrees of free-
dom in addition to the translation ones. This in principle requires using quantum
mechanics, but one can devise useful and accurate models in the classical frame-
work as well. Frequently the internal enerByis the only additional variable
that is needed, in which case one can think of the gas as of a mixture of species,
each differing from the other because of the valu&pfif the latter variable is
discrete we obtain a strict analogy with a mixture; otherwise we have a contin-
uum of species. We remark that in both cases, kinetic energy is not preserved by
collisions, because internal energy also enters into the balance; this means that
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a molecule changes its “species” when colliding. This is the simplest example
of a “reacting collision,” which may be generalized to actual chemical species

when chemical reactions occur. The subject of mixtures and polyatomic gases
will be taken up again in Chapter 6.

Problem
1.3.1 Show that Eq. (1.3.3) holds (see Refs. 3 and 6).

1.4. Collision Invariants

Before embarking on a discussion of the properties of the solutions of the
Boltzmann equation we remark that the unknown of the latter is not always
chosen to be a probability density as we have done so far; it may be multiplied
by a suitable factor and transformed into an (expected) number density or
an (expected) mass density (in phase space, of course). The only thing that
changes is the factor in front of Eq. (1.3.1), which is no lonlgeiTo avoid any
commitment to a special choice of that factor we repldd&0, V) by B, V)

and the unknowrP by another letterf (which is also the most commonly
used letter to denote the one-particle distribution function, no matter what its
normalization is). In addition, we replace the current velocity varighgmply

by £ and¢, by £,. Thus we rewrite Eg. (1.3.1) in the following form:

f f
CARP L / (F'f/ — ££,)B(0, V)dE,dode, (1.4.1)
ot aX R3 JB-

whereV = |€ — £,|. The velocity argument§’ and¢., in f’ and f, are of
course given by Egs. (1.2.1) (or (1.2.16)) with the suitable modification.

The right-hand side of Eq. (1.4.1) contains a quadratic expre$3{dn f),
given by

Q(f, f) =/ (f'f, — ff)B@©, V)d¢,dode. (1.4.2)
R JB-

This expression is called the collision integral or, simply, the collision term; the
guadratic operato@ goes under the name of collision operator. In this section
we study some elementary properties@f It actually turns out to be more
convenient to study the slightly more general bilinear expression associated
with Q(f, f), thatis,

1
Qg = / / (H'g,+0'f, — fg. — gf)B@. V)de,dode.  (1.4.3)
R3 JB-
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Itis clear that whery = f, Eq. (1.4.3) reduces to Eq. (1.4.2) and

Q(f,9) =Q(g, ). (1.4.4)

Our first aim is to study the eightfold integral:

[t asede

1
_ 1 / / / (f'g,+ 0 f/ — fg, — g.)g(©)B®, V), dedode,
2 Jre)re)B.
(1.4.5)

where f, g, and¢ are functions such that the indicated integrals exist and the
order of integration does not matter. A simple interchange of the starred and
unstarred variables (with a glance at Egs. (1.2.1)) shows that

[t ovee

_1 / / / (F'gL+ 0/ — fg. — gF)p(€)B(G, V)dE,dédode.
2 Jre Jre )5
(1.4.6)

Next, we consider another transformation of variables, the exchange of primed
and unprimed variables (which is possible because the transformation in
Eqg. (1.2.1) is linear and its own inverse, for any fix@d This gives

[ et o

_1 / / / (fg. +gf. — F'g. — o F.)6 (€)B(O, V)dE.de dode.
(1.4.7)

(Actually sinceV’ - n = —V - n we should write3~ in place ofB™; changing
ninto —n, however, gives exactly the expression written here.)

The absolute value of the Jacobian frgng, to ¢, £’ is unity (see Problems
1.2.4 and 1.2.5); thus we can writ¢ d¢, in place ofd¢’ d¢,, and Eq. (1.4.7)
becomes

[ oveue

1
_1 / / (fg. + 9f, — £'0, — g £)$(€)B(, V)de,dedode.
2 Jrs Jre -
(1.4.8)
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Finally, we can interchange the starred and unstarred variables in Eq. (1.4.8) to
find

[, et o

=5 L[ [ (e gt. - 19— g o€ 0. Vide.dedode.
2 RS JR3 JBB-
(1.4.9)
Equations (1.4.6), (1.4.8), and (1.4.9) differ from Eq. (1.4.5) because the factor
¢ (&) is replaced byp(€,), —¢ (&), and —¢(£,) respectively. We can now
obtain more expressions for the integral in the left-hand side by taking linear
combinations of the four different expressions available. Among them, the

most interesting one is the symmetric expression obtained by taking the sum of
Egs. (1.4.5), (1.4.6), (1.4.8), and (1.4.9) and dividing by four. The result is

1 !~/ ! £/
[otosede=¢ [ [ [ (g +gt-ta.-gh
R3 RS JR3 JB-
X (¢ + ¢ — ¢ — ¢L)B(O, V)€, dedOde. (1.4.10)
Thisrelation expresses a basic property of the collision term, which is frequently
used. In particular, wheg = f, Eq. (1.4.10) reads

[ Q. D

4 R3JR3.JB- * €
(1-4.11)

We remark that the following form also holds:

[acns@de=5[ [ [ 116 +o0-6.50.v)de.dedoce.
R 2 JrsJre B
(1.4.12)

Infact, the integralin Eq. (1.4.11) can be splitinto the difference of two integrals
(one containingf’ f/; the otherf f,); the two integrals are just the opposite of
each other, as an exchange between primed and unprimed variables shows, and
Eqg. (1.4.12) holds.

We now observe that the integral in Eq. (1.4.10) is zero independent of the
particular functionsf andg, if

P+ ¢ =9 + ¢, (1.4.13)
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is valid almost everywhere in velocity space. Because the integral appearing in
the left-hand side of Eq. (1.4.11) is the rate of change of the average value of
the functiong due to collisions, the functions satisfying Eq. (1.4.13) are called
“collision invariants.” It can be shown (see, e.g., Ref. 3 and Problems 1.4.1-
1.4.6) that a continuous functianhhas the property expressed by Eq. (1.4.13)

if and only if

(&) =a+b-&+clgl? (1.4.14)

wherea andc are constant scalars ahd constant vector. The assumption of
continuity can be considerably relax&d° The functionsyo=1, (Y1, V2, ¥3)=
&, ¥4 = |€)? are usually called the elementary collision invariants; they span
the five-dimensional subspace of the collision invariants.

Thus, in summary, a collision invariant is a functigrsuch that

/R3¢(E)Q(f, 9)d¢ =0, (1.4.15)

and the most general expression of a collision invariant is given by Eq. (1.4.14)

Problems

1.4.1 Showthatik is a vector in am-dimensional vector spads, and f (x)
afunction continuous in at least one point and satisfyfigg) + f (y) =
f(x +y) for anyx, y € E,, then f(x) = A - X, whereA is a constant
vector. (Hint: Show thaf is actually continuous everywhere and satis-
fies f (rx) = rf (x) for any integer ; extend this property to any rational
and then to any real, then use a basis iR,; see Refs. 3 and 6.)

1.4.2 Show that the even part of a functignsatisfying Eq. (1.4.13) is a
function of |€|? alone (Hint:¢ + ¢, is constant if and only i + £, and
|€]2 + &, |? are constant angl + £, vanishes fog, = —£).

1.4.3 Show that the even part of a continuous function satisfying Eq. (1.4.13)
has the forna + c|£|?, wherea andc are constants. (Hint: Let = ¢ (0)
and use the results of the two previous problems.)

1.4.4 Show that it and¢, are orthogonal then the odd part of a collision
invariantg satisfiesp (&) + ¢ (£,) = ¢p(& +E,).

1.4.5 Extendthe resultof the previous problemto a pair of veétarsi¢, , not
necessarily orthogonal. (Hint: Consider another vegtarthogonal to
both of them with magnitudg, - £|*/? and consider the vectogst €.,
&, £ &,, to which the result of the previous problem applies.)

1.4.6 Applythe results of Problems 1.4.1 and 1.4.5 to show that the odd part of
a collision invariant, if continuous i, must have the forrb - £ where
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b is a constant vector, so that, because of the result of Problem 1.4.3 a
collision invariant must have the form shown in Eq. (1.4.14).

1.5. The Boltzmann Inequality and the Maxwell Distributions

In this section we investigate the existence of positive functibrisat give a
vanishing collision integral:

Q(f, f):/ / (f'f/ — ££,)B(, V)d¢,dode = 0. (1.5.1)
R3 JB-

To solve this equation, we prove a preliminary result, which plays an important
role in the theory of the Boltzmann equationflfs a nonnegative function such
that logf Q(f, f) is integrable and the manipulations of the previous section
hold wheng = log f, then theBoltzmann inequality

/ log fQ(f, f)d¢ <0 (1.5.2)
R3

holds; further, the equality sign applies if, and only if, lbgs a collision
invariant, or, equivalently,

f =expa+b-&+cléP. (1.5.3)

To prove Eg. (1.5.2) it is enough to use Eq. (1.4.11) witk log f:

1
/ log f Q(f, f)d¢ = 21/ log(ff./f f)(f' f/—ff)BO, V)dedE, de,
" e (1.5.4)
and Eq. (1.5.2) follows thanks to the elementary inequality
(z—y)log(y/2) <0 (y,ze RY). (1.5.5)

Equation (1.5.5) becomes an equality if and only i z; thus the equality
sign holds in Eqg. (1.5.2) if and only if

f§/ = ff, (1.5.6)

applies almost everywhere. But, taking the logarithms of both sides of
Eq. (1.5.6), we find tha$ = log f satisfies Eq. (1.4.13) and is thus given
by Eg. (1.4.14). The functio = exp(¢) is then given by Eq. (1.5.3).

We remark that in the latter equaticrmust be negative, sincé must be
integrable. If we let = — 8 andb = 28v (wherev is another constant vector)
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Eq. (1.5.3) can be rewritten as follows:
f = Aexp(—B|€ —Vv|?), (1.5.7)

whereA is a positive constant related &oc, and|b|? (8, v, and A constitute

a new set of constants). The function appearing in Eq. (1.2.7) isMthevell
distributionor Maxwellian Frequently one considers Maxwellians with= 0
(nondrifting Maxwellians), which can be obtained from drifting Mawellians by
a change of the origin in velocity space.

Let us return now to the problem of solving Eqg. (1.5.1). Multiplying both
sides by logf and integrating gives Eq. (1.5.2) with the equality sign. This
implies thatf is a Maxwellian, by the result that has just been proved. Suppose
now thatf is a Maxwellian; thenf = exp(¢), whereg is a collision invariant
and Eqg. (1.5.6) holds; Eq. (1.5.1) then also holds. Thus there are functions that
satisfy Eq. (1.5.1) and they are all Maxwellians, Eq. (1.5.7).

Problem
1.5.1 Prove (1.5.5).

1.6. The Macroscopic Balance Equations

In this section we compare the microscopic description supplied by kinetic
theory with the macroscopic description supplied by continuum gas dynamics.
For definiteness, in this sectioh will be assumed to be an expected mass
density in phase space. To obtain a dengity; p (X, t), in ordinary space, we
must integratef with respect tc:

o= fdeg. (1.6.2)
R3
The bulk velocityv of the gas (e.g., the velocity of a wind) is the average of
the molecular velocitieg at a certain poink and time instant; since f is
proportional to the probability for a molecule to have a given velogitis
given by

L Jetide

AT (1.6.2)
R3

(the denominator is required evenfifis taken to be a probability density in
phase space, because we are considering a conditional probability, referring to



1.6 The Macroscopic Balance Equations 17

the positionx). Equation (1.6.2) can also be written as follows:

PV = /ngfdg, (1.6.3)

or, using components,

pL = / Ei fdf (I = 1, 2, 3) (1.6.4)
R3

The bulk velocityv is what we can directly perceive of the molecular motion
by means of macroscopic observations; it is zero for a gas in equilibrium in a
box at rest. Each molecule has its own velo&tywhich can be decomposed
into the sum o and another velocity

c=¢—-v (1.6.5)

called the random or peculiar velocity;is clearly due to the deviations gf
fromv. It is also clear that the averageil zero (Problem 1.6.1).

The quantitypv; that appears in Eqg. (1.6.4) is thta component of the mass
flow or, alternatively, of the momentum density of the gas. Other quantities of
similar nature are: the momentum flow

my = [ &g fde =129 (1.6.6)
R
the energy density per unit volume:
1 2
w = —/ 1€ fd€g; (1.6.7)
2 RS
and the energy flow:
1 5 o
=, [ElePtde (=129, (16.8)
R3

Equation (1.6.8) shows that the momentum flow is described by the components
of a symmetric tensor of second order, because we must describe the flow in
theith direction of thejth component of momentum. Itis to be expected thatin

a macroscopic description only a part of this tensor will be identified as a bulk
momentum flow, because, in genenal; will be different from zero even in

the absence of a macroscopic mot{@n= 0). It is thus convenient to reexpress

the integral inmy; in terms ofc andv. Then we have (Problem 1.6.2)

mij = pvivj + [ij, (1.6.9)
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where
Pij =/ cgepfde  (,j=123) (1.6.10)
R3

plays the role of the stress tensor (because the microscopic momentum flow
associated with it is equivalent to forces distributed on the boundary of any
region of gas, according to the macroscopic description).

Similarly one has

1
w=p V|2 + pe, (1.6.11)

wheree is the internal energy per unit mass (associated with random motions)
defined by

pe=}/ Ic|? fdg, (1.6.12)
2 /o

and (Problem 1.6.3)

1 3 .
ri = pvj <2|V|2 + e) + ;Uj Pij + Gi (i=123), (1.6.13)

whereq; are the components of the so-called heat flow vector:

o = }/qlqudé. (1.6.14)
2J3

The decomposition in Eq. (1.6.13) shows that the microscopic energy flow is
a sum of a macroscopic flow of energy (both kinetic and internal), of the work
(per unit area und unit time) done by stresses, and of the heat flow.

To complete the connection, as a simple mathematical consequence of the
Boltzmann equation, one can derive five differential relations satisfied by the
macroscopic quantities introduced above; these relations describe the balance
of mass, momentum, and energy and have the same form as in continuum
mechanics. To this end let us consider the Boltzmann equation

of of
o +¢- rin Q(f, f). (1.6.15)

If we multiply both sides by one of the elementary collision invariants
Yo (@ = 0,1,2,3,4), defined in Section 1.4, and integrate with respect to
&, we have, thanks to Eq. (1.1.15) with= f and¢ = v,:

| w©at. Hg=o. (1.6.16)



