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General theory of quadratic forms

Throughout this book, rings R are commutative and contain the unity 1,
and modules M over R are finitely generated with lm = m form € M.

In this chapter, we give some basics about quadratic forms which include
the so-called Witt theorem, Clifford algebra and quaternion algebra. Be-
sides them, the theory of quadratic forms over finite fields is outlined. It is
useful for readers to get used to how to deal with quadratic forms and also
to their applications.

1.1 Symmetric bilinear forms

Let M be a module over a ring R and b a mapping from M x M to R
satisfying the conditions

(1) b(x,y) =b(y,z) for 7,y € M
(2) b(rz+ sy, z) =rb(z,z) + sb(y,z) for r,s € R, z,y,2 € M.

We call b a symmetric bilinear form and the pair (M, b) or simply M a
symmetric bilinear module over R. When R is a field, we often use “space”
instead of “module”.

If M is free and {v;}?_; is a basis of M, then we write

M = (4)

for A = (b(vi,v;)). For another basis {u;}j-, there is a matrix T =
(ti;) such that (u1,---,un) = (v1,---,v,)T, t;; € R,detT € R, and
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2 1 General theory of quadratic forms

(0(ui, us)) = (B g thivhs 2op thivn)) = (g p trib(vk, vn)tn;) = 'TAT =
A[T] holds and so we have M = (A) = (A[T)). Thus det A(R*)? is inde-
pendent of the choice of a basis and is uniquely determined by M, and we
denote it by

dM

and call it the discriminant. (It is defined only for free modules.)
For a non-zero symmetric bilinear space U over a field F, we call U
regular if AU # 0, and it is easy to see that

U is regular
< if b(z,U) =0, thenz =0
& Homp(U, F) = {y — b(z,y) |z € U}
< for abasis {u;} of U, there is a subset {v;} of U such that b(u;, v;) =
8;,; (Kronecker’s delta).

(We use “regular” for spaces only!)
For a subset S of a symmetric bilinear module M over a ring R, we put

St={zeM|blz,s)=0 for seS}.

For symmetric bilinear modules M, My, - , M, over a ring R such that
M=M® --©Mp, b(M;, M;) =0if i # j, we call M the orthogonal sum
of My,---, M, and write

M=M 1 ---1 M,

When M has a basis {v;} such that M = Rv; L --- L Ru,, {v} is
called an orthogonal basis of M. By the above notation, M =1, (a;) with
a; = blv;, v;).

For a symmetric bilinear space U = Uy 1L --- 1 U, over a field F,
dU = dU;---dU,, is clear and so U is regular if and only if every Uj; is
regular.

Proposition 1.1.1. Let U be a symmetric bilinear space over a field F
and V a subspace of U. If V is regular, then U =V L V* holds.

Proof. Since V is regular, we have VNVL = {z € V |b(z,V) = 0} = {0}
and every linear mapping f € Homp(V, F) is given by z ~ b(z,y) for
y€V. ForueU,z— b(z,u) is a linear mapping from V to F. Therefore,
there is an element y € V such that b(z,u) = b(z,y) for x € V, which
implies u —y € V4. Thismeans U =V +V+ and then U = Ve VL =
V1Vt O
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1.2  Quadratic forms 3

Proposition 1.1.2. Let U be a symmetric bilinear space over a field F
and V a subspace of U. Then V NU*+ = {0} if and only if Homp(V, F) =
{x — b(z,y) |y € U}, and then dimV+ =dimU — dim V.

Proof. Suppose VN UL = {0}. Take a subspace W(D> V) such that
U=WaeU'L. If we W satisfies b(w, W) = {0}, then b(w,U) = {0} and
hence w € U+ NW = {0}. Thus W is regular, and for f € Homg(V, F)
we extend it to Homp(W, F) by f(Wy) = 0 with W = W, ® V. Because
of regularity of W, there is an element y in W so that f(z) = b(z,y) for
z in W and especially in V. If, conversely V N UL # {0}, then we take a
basis {v;} of V such that v; € VNUL. A linear mapping f defined by
f(v1) =1, f(v;) = 0 (i > 2) is not of form f(x) = b(z,y), since b(vy,U) = 0.
Thus the former part has been proved.

Suppose VNU* = {0} and for a basis {v;}/%, of V we can take a subset
{u;}, of U such that b(v;,u;) = 8;; for 1 < 4,5 < m . Then {u,;}2, is
linearly independent. We define a linear mapping

f:U—- U=, Fu,

by f(u) = 3, b(u,vi)u;. Then f is surjective by virtue of f(u;) = u; and
ker f = V1 is clear. Thus we have dim U — dim Vi =dimUy=dimV. O
The proof shows

Corollary 1.1.1. In Proposition 1.1.2, VN U+ = {0} if and only if V is
contained in some regular subspace of U.

1.2 Quadratic forms

Let M be a module over a ring R and ¢ a mapping from M to R which
satisfies the conditions

(i) glaz)=a%q(z) forac R,z € M,
(i) b(z,y) :==q(z +y) — q(x) — q(y) is a symmetric bilinear form.

We call the pair (M, q) or simply M a quadratic module over R, g a
quadratic form and b the associated symmetric bilinear form. When R is a

field, we often use “space” instead of “module”.
Putting x = y, we have

b(z,z) = 2¢(x) for z € M.
If 2is in R, then we can associate a symmetric bilinear form -;—b(:c, y) =

B(z,y). Then B(z,z) = q(z) and conversely for a given symmetric bilinear
form B(z,y), q(z) := B(z, ) is a quadratic form and g(z+y)—q(z)—q(y) =
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4 1 General theory of quadratic forms

2B(z,y). Thus “quadratic module” and “symmetric bilinear module” are
equivalent if 2 € R*.

In this section and the next we will associate b(z,y) with M, but after
1.4, the fields are of characteristic 0, and we will prefer the bilinear form B
instead of b. The difference between them is minor and the choice depends
on the individual’s taste.

Considering a quadratic module M as a symmetric bilinear module with
b(z,y) (B(z,y) after section 1.4), the notations and terminology 1, M =
(A),d M and regular remain meaningful.

If 2 is a unit, then L and “regular” are independent of the choice of
B(z,y) or b(z,y). But d M differs by 2" with n = rank M, since M = (A)
or (2714) for A = (b(z,y)), according to b(z,y) or B(z,y), respectively.

For a quadratic module M, we put

Rad M := {z € M* |q(z) = 0}.

This is a submodule of M and if 2 € R*, then Rad M = ML,

Theorem 1.2.1. Let U be a quadratic space over a field F. If ch F # 2,
then we have
U=UyL--- LU, LUt

where the U, ’s are regular and 1-dimensional.
If ch F = 2, then we have

U=V L. LV, LWy L.~ L W, 1LRadU,

where the V;’s are regular and 2-dimensional, the W;’s are 1-dimensional
and 0 <t < [F* : (F*)?] and

Ut=W;L--- LW, LRadU.

Proof. Suppose ch F' # 2. If there is an element u; € U such that q(u;) # 0,
then b(uy,u1) = 2¢(u1) # 0 and so U; = Fu; is regular. Proposition 1.1.1
implies U = U; L Ui. Repeating this, we have U = U; L --- 1 U, L
Ur41 where Uy, ---,U, are regular and 1-dimensional and ¢(z) = 0 for
all z € Ury1, which implies b(U,41,U,4+1) = 0 and hence U,,; ¢ UL,
Decomposing z € U+ along the above orthogonal decomposition of U ,
Ut C U, is easy to see.

Next, suppose ch F' = 2. If z,y € U satisfies b(z,y) # 0, then V; =
Flz,y] is regular with d V; = —b(z, y)2, noting b(z, ) = b(y,y) = 0. Hence
we have U = V] L Vli. Repeating this, we have U=V, 1 --- LV, 1L U
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1.2 Quadratic forms 5

where Vi,---,V; are regular and 2-dimensional and b(Uo,Up) = 0. As
above, Uy = U+ holds. We take a direct sum decomposition

Ut=W1®---&W,®RadU

where the W;’s are 1-dimensional. Since U+, UY) =0, U+ =W; L .- L
W; 1L RadU holds. Put W; = Fw;. Since w; € U* but w; ¢ RadU,
g(wi) # 0 holds. If q(uw;)(FX)? = q(w,)(F*)? for i # j, then g(uw;) =
a?q(w;) for a € F* holds and this means q(w; — aw;) = 0. Hence we
have a contradiction w; — aw; € RadU. Thus the q(w;)’s give distinct
representatives of F* /(F*)2, a
Let M, N be quadratic modules over a ring R. If a linear mapping o from
M to N satisfies that
o is injective and
g(o(z)) = q(z) for z € M,
we call o an isometry from M to N and say that M is represented by N
and write
oc:M<— N,

When o(M) = N, we write
oc:M=N,

and say that M and N are isometric. The group of all isometries from M
to itself is denoted by
O(M).

Suppose that R is a subring of a field F and generates F. For an R-
submodule M of a quadratic space V over F satisfying FM = V, we denote
by

OF(M):={oc€cO(M)|detoc =1}
where det o is defined by det T for a matrix T with

(0’(’01), tet ’O-(Un)) = (’Ul, s 7'Un)T

for a basis {v;} of V.
For an isometry o from M to N, it is easy to see

blo(x),o(y)) = b(z,y)

for z,y € M.

Conversely, an injective linear mapping ¢ from M to N which satisfies
blo(z),o(y)) = b(z,y) is an isometry if 2 € R*, since g(z) = 27 1b(z, z).

For quadratic modules M, N and a linear mapping ¢ from M to N with
q(o(z)) = q(z) for z € M, o(z) = 0 yields 2 € M+ since b(z, M) =
b(a(x),a(M)) = {0}. If, moreover M is a regular quadratic space, then o
is an isometry.

Now we give an important example of isometry.
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6 1 General theory of quadratic forms

Proposition 1.2.1. Let M be a quadratic module over a ring R. For an
element x in M with q(x) € R*, we put
(y) =y — b(z,y)a(z) "'z for y € M.
Then 15 s an isometry from M to M and satisfies
To(z) = —x, 7,(y) =y for y € zt, and 72 =1id.

Proof. 7,(z) = —z and 7,(y) = y for y € z* are easy.

T2(y) = T2(y) — bz, y)q(z) ' ra(z) =y

implies 72 = id and the bijectivity of 7. Finally

q(7=()) = a(y) + b(z, v)q(z) 2q(z) — bz, y)q(z) " b(z, y) = q(y)

implies that 7, is an isometry. O
75 is called a symmetry. If R is a field, then the determinant of a trans-
formation 7, is —1.
The following theorem of Witt type is due to Kneser.

Theorem 1.2.2. Let R O R be rings and P a proper ideal of R satisfying
R=R*XUP and R*NP = 0. Let L, M, N, H be R-submodules of a quadratic
module U over R such that they are finitely generated over R, M, N are free
R-modules and L > M, N, H. Suppose that

(1) q(H) C R, b(L,H) CR,
(2a) Homp(M, R) = {z — b(z,y) |y € H},
(2b) Homp(N, R) = {z — b(z,y) |y € H},
and 0 : M = N is an isometry such that
(3) o(z) =xmod H
forx € M.
Then o can be eztended to an element of O(L) which satisfies
(4) o=id on H*

and (3) for every z in L.
Proof. For z in H with ¢(z) € R*, the symmetry
(z) = z — b(z, 2)q(2) "'z

satisfies three properties: 7,(L) = L because of the property (1), secondly
(3) for z € L and (4) by definition of 7,. For a submodule J of H, we
denote by S(J) a subgroup of O(L) generated by 7, (z € J,q(z) € RX),
and then every element in S(J) satisfies the condition (3) for z € L and
the condition (4). Note that the quotient ring R := R/P is a field. First,
we will prove a preparatory assertion:
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Assertion 1. We assume, moreover

(5) iR > 2 = g(x) € R* for somex € H,
(6) $R=2= q(z) € R* and b(z,H)C P for somex € H.

Then o is a restriction of an element of S(H).

We prove this by induction of the rank of M.
Suppose rank M = 1 and M = Rm, N = Rn,n = g(m), and put, by (3)

(7 h=n—-—me€H.
Then g(h) = 2¢(n) — b(n, m) = 2¢{(m) — b(n,m) and (7), (1) imply
(8) g(h) = b(n,h) = —b(m, h) € R.

If g(h) € R*, then 7,(m) = m — b(h,m)q(h)~th = n by (8), (7), and we
complete the proof in the case of rank M = 1.
Suppose

9) g(h) € P.
First, we show that if there is an element f in H satisfying
(10) q(f),b(f,m),b(f,n) € R™,

then the proof in the case of rank M = 1 is completed.
Supposing the existence of such f, we put g := n — 74(m); then (7), (10)

imply
(11) 9="h+b(f,m)q(f)""f € H,
and
a(g) = a(h) + b(f,m)*a(f)~q(f) + b(f,m)q(f) " b(h, f)
(12) = q(h) +b(f,m)b(f,n)q(f)"" € R
by (9), (10).

Moreover, we have

Tg(n) =n —b(n,g)q(9)"'g

=n— (b(n, h) + b(f,m)q(f)"'b(n, f))q(g)"'g by (11)
=n~—(b(n,h) +q(g) — q(h))q(g)"'g by (12)

=n-—g by (8)

=T7¢(m) by definition of g.
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8 1 General theory of quadratic forms

Thus o is a restriction of 747 € S(H).

It remains to show the existence of f.

We denote a vector space H/PH over R by H and an element of H, R
represented by z € H,y € R by Z,7, respectively. By virtue of (1), H
becomes a quadratic space over R by §(Z) := ¢(z) for x € H. This is well
defined by (1). Put

{zeH]| ) =0},

{# € H|bz,n) = 0).

The condition (10) is equivalent to g(H \ (m* Un")) # 0. From (8), (9)

follows 7 NAt 3 h, and by virtue of (2) there exist hp,, hn, € H such that

b(m, hy) = 1 and b(n, h,) = 1. Thus dimm* = dimn*- = dim H — 1.
Suppose

E~?|
&
§|

ml m'

(z,

G"‘I Il

8|

(13) g(A \ (m~unt)) =0.

For z € mt Nat and g € H\ (m* Uat), we have, by (13)
(14) §(aZ + §) = a*§(z) + ab(z,5) + §(g) =0 fora € R.
If R > 2, then (14) implies

(15) q(z) = b(z,9) = 4(y) = 0.

Note that A € m+ N @At, and the vectors which are not in the union of
two hyperplanes m*, At span the whole space if the number of elements
of the coefficient field is greater than 2. Putting Z := h in (15), we have
b(h, H) = 0 and then m* = At by (7). From this with (15) it follows that
g(mmt) = g(H\m*) = 0 and so g(H) = 0. This contradicts the assumption
(5).

Suppose #R = 2 and put

Hy :=mtnatnHL and Hy := (A \ (m* uat))n H;

then (14) implies §(H,) = §(H2) = 0, noting b(Hy, Hy) = 0. For z € H,

we have
zemtnNH & bz,m)=0,bZ H)=0
< b(Z,7n) = 0,b(z, H) = 0 by (7)
szentnHL,
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1.2 Quadratic forms 9
and hence H; = m*+ N H' =7+ N HL, and then
Hy=H\m)nH\a")NnH =\ H,.

This means g(H+) = g(H;) U g(Hz) = 0 which contradicts (6). Thus we
have completed the proof in the case of rank M = 1.

Suppose 7 = rank M > 1. Let {mq,--- ,m,} be a basis of M and we take
h; € H such that b(m;, h;) = 6;; by virtue of the assumption (2). It is easy
to see

(16) H=o,Rh, ®K,K = M+ NH.

From the assumption (5), (6) there is an element k € H or H* such that
g(h) # 0 according to R > 2 or §R = 2. Changing a basis if necessary, we
may suppose

(17) h e Rh, + K.

Applying the inductive assumption to My := @:;11 Rm,, there is 7 € S(H)
such that 7 = 0 on My. Taking 7~}(N), 7710 instead of N, o, they satisfy
conditions (2), (3), because of 7(H) = H and a remark at the beginning of
the proof. Hence we may suppose

(18) olmg))=m; forl<i<r—1,
1

taking 770 as o again. Then, for x € M and 1 < i < r — 1, we have
b(o(z) — z,m;) = b{o(x), m;) — b(z,m;) = 0 by (18) and hence by (3), (16)

(19) o(z)~z € HN Mg = Rh, + K forz € M.

We show that conditions (1), ---, (6) are satisfied for M; = Rm,, Hy =
Rh, + K instead of M, H respectively. (1) follows from Hy C H. By
definition of A, we have b(m,,h,) = 1 and so the condition (2a) for M;.
Since {m1,--- ,m,_1,0(m,)} is a basis of N, there is an element A’ € H
such that b(m;,h’) =0 for 1 < i <r —1 and b(o(m.),h) = 1 from the
original assumption (2b). Hence A’ is in H N Mg~ = Rh, + K = Hy and so
(2b) holds for o¢(M;). The condition (3) follows from (19), and (5), (6) do
from (17). Hence, by the inductive assumption, there exists 7 € S(Hp) such
that 7(m,) = o(m,), moreover my,--- ,m,_; € Hy implies 7(m;) = m; =
a(m;) for 1 <i < r—1. Thus we have 0 = 7 on M and 7 € S(Hy) C S(H)
completes the proof of the assertion.
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10 1 General theory of quadratic forms

Proof of Theorem 1.2.2. Let V be a binary quadratic module over R
with basis {v1,v2} such that g(ai1vi + agv2) = a1az for a; € R. Put

UIZUL‘/,LIZL_J_(RU1+R7)2),M,:MLRU1,
N =N 1 Rv,,H = H 1L R(v1 +v2),0’ =0 L (id on Ruvy).

Then g(v; + v2) = 1 and moreover b(vi + vo, H') C P if §R = 2. With
M',N' H' ¢ instead of M, N, H,o, conditions (1), ---, (6) are satisfied
and hence there exists 7 € S(H') such that 7 = ¢’ on M’. Now b(v; +
vg,v1 — v2) = 0 implies v; — v € H'"' and so 7(vy — v2) = v1 — v2, hence
7(vs) = v; for i = 1,2 by 7(v1) = o' (v1) = v1. Also L = L' N {vy,v2}* and
(L") = L' yield 7 € O(L). Thus we have completed the proof. a

We note that the conditions (1) and (3) are absorbed in definitions in
the case of R = R and U = L = H and that this case is also quite useful.

Corollary 1.2.1. Let U be a quadratic space over a field F, and V,W
subspaces satisfying V N UL = W N UL = {0}. Then every isometry o :
V @ W is extended to an isometry of U, and if ch F # 2 and ¢(U) # 0
then it is a product of symmetries.

Proof. In the theorem, we put R=R:=F, P:={0}, L=H:=U, M :=
V, N := W. Conditions (1), (3) are obviously satisfied and (2) is done
by Proposition 1.1.2. The latter part follows from Assertion 1 with the
condition (5). O

Corollary 1.2.2. Let U be a regular quadratic space over a field F' with
ch F # 2. Then O(U) is generated by symmetries.

Proof. In the previous corollary, we have only to put U =V = W. ]

Corollary 1.2.3. Let V=V, L Vo, W =W, L W, be quadratic spaces
over a field F and suppose that V — W, V3 = W1 and V1 is reqular. Then
Vs is represented by Wa. If, moreover V = W, then Vo =2 Ws.

Proof. Since V is represented by W, we may suppose that V' is a subspace
of W, and let o be an isometry from V; to Wi. We can extend it to o1
in O(W) by Corollary 1.2.1, since V; is regular. Then we have 01(V2) C
o1(Vit) € 01 (Vi)*+ = Wit = Wa. Hence V3 is represented by Wo. If V = W,
then we have dim V2 = dim W5 and hence o1 (Vs) = Wa. O

Other applications are given later.

Let U be a quadratic space over a field F. For a non-zero vector z, we call
z anisotropic if q(x) # 0, isotropic if ¢(z) = 0, respectively. If U contains
an isotropic vector, then U is called isotropic, otherwise anisotropic, that
is if g(z) = 0 for z € U implies z = 0, then U is anisotropic. If ¢(U) = 0,
then U is called totally isotropic.
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