Cambridge University Press 978-0-521-64684-0 - Fractography: Observing, Measuring and Interpreting Fracture Surface Topography Derek Hull Table of Contents More information

Contents

Preface xiii Acknowledgements xvi

1	Introduction to the concepts used in the observation, measurement and interpretation of fracture surface tonography 1				
	11	A spects of seeing	1		
	1.1	6			
	1.2	1.2.1 General	6		
		1.2.1 Ochelal 1.2.2 Fractal geometry	10		
		1.2.3 Microstructural dimensions and stress fields	10		
	1.3	What is a crack?	14		
	14	The origin of cracks			
	1.1	1.4.1 Introduction	17		
		1.4.2 Nucleation of cracks by deformation	18		
		1.4.3 Other aspects of crack nucleation	21		
	1.5	Mechanics and micro-mechanics of cracks	23		
		1.5.1 Introduction	23		
		1.5.2 Stress fields around an elliptical hole and a crack	25		
		1.5.3 Critical condition for crack propagation: Griffith and			
		Irwin	28		
		1.5.4 Other topics	32		
2	Obse	erving, describing and measuring fracture surface topography:	some		
	basic	cs using Ketton stone as an example	35		
	2.1	An approach to appreciating 3-D topography	35		
	2.2	A brief look at the past			
	2.3	What is Ketton stone?			
	2.4	Hooke's observations			
	2.5	5 Light microscopy			
		2.5.1 The naked eye	45		
		2.5.2 General	46		
		2.5.3 Resolution and depth of field	47		
		2.5.4 Geometrical considerations	50		
		2.5.5 Illumination	51		
	2.6	Optical sections and quantitative descriptions of			
		topographical detail	52		
			vii		

viii	Contents		
	2.7	Confocal scanning light microscopy	56
	2.8	Scanning electron microscopy	58
		2.8.1 General	58
		2.8.2 Images produced by secondary and back-scattered	
		electrons	59
		2.8.3 Resolution, magnification and depth of held	62
	2.0	2.8.4 Geometrical considerations	64
	2.9	Other and Kellon stone	04
	2.10	surfaces	68
	2 Tilti-	ar avadra	60
	5 I IIII 2 1	Evalution of amost hu surving area key with double surveture	60
	3.1	Evolution of smoothly curving cracks with double curvature	05 7/
	3.2	The comparison constraint	74
	3.3	2.2.1 Definitions of tilt and twist	70
		3.3.1 Definitions of the and twist 3.3.2 Growth of cracks to form smooth surfaces	70
		3.3.3 Experimental observation of crack expansion	80
	3.4	Growth or evolution of a crack under mixed I/II conditions	81
	3.5	Cracks round bends	87
	4 River	line natterns	91
	4.1	Topographical features of river line patterns	91
	4.2	Development of river line patterns on crystalline cleavage facet	s 94
		4.2.1 Steps formed by cracks intersecting screw dislocations	94
		4.2.2 Increasing step height in crystalline solids	102
	4.3	River patterns in amorphous brittle solids: Sommer's	
		experiment	103
		4.3.1 Sommer's experiment	104
	4.4	Measurement of surface topography using interference light microscopy	109
	4.5	Examples of river lines in a variety of solids	113
	4.6	Nucleation of river line steps	117
	4.7	Separation at the steps	118
	5 Mirr	or, mist and hackle: surface roughness, crack velocity and dynamic	2
	stress	sintensity	121
	5.1	The meaning of 'mirror', 'mist' and 'hackle'	121
	5.2	Surface topography from the measurement of roughness profiles	129
		5.2.1 Takahashi and Arakawa's experiment	129
		5.2.2 Roughness measurements	131
		5.2.3 Roughness parameters	134
	5.2	Some examples of changes in roughness with K and y	136
	5.5	Some examples of changes in foughness with K_d and V	150

Cambridge University Press 978-0-521-64684-0 - Fractography: Observing, Measuring and Interpreting Fracture Surface Topography Derek Hull Table of Contents More information

Conten	ts	ix
	5.4.1 Nucleation and growth of micro-cracks ahead of the	
	growing crack	140
	5.4.2 Plastic deformation ahead of the growing crack	142
	5.4.3 Progressive and increasing micro-branching leading to	144
5	5 Correlation of AFM images and tonographical detail	147
5.	6 Direct observation of progressive roughening	150
6 0	leavage of crystalline solids	157
6	1 Crystallographic cleavage	157
6	2 Some crystallographic aspects	160
6	3 Cleavage of mica	163
6	4 Fracture of zinc	166
6	5 River lines on calcite	171
6	6 Interpretation of interference patterns on fracture surfaces	175
	6.6.1 Interference at blisters and wedges	176
	6.6.2 Interference at fracture surfaces of polymers that have	170
	crazed	178
	6.6.3 Transient fracture surface features	180
6.	7 Block fracture of gallium arsenide	180
	6.7.1 Three-point bend tests	180
	6.7.2 Determining the orientation of cleavage facets	181
	6.7.3 Rough surfaces	182
6.	8 Cleavage of b.c.c. metals, including steel, and the stress intensity effect	183
	6.8.1 Cleavage along twin-matrix interfaces	184
	6.8.2 Progressive roughening	186
6	9 Quantitative stereo-microscopy and the determination of the orientation of planar facets	187
6	10 Cleavage fracture of polycrystalline materials	191
· · ·		
7 F	racture at interfaces	195
7	.1 Cracks at interfaces	195
7	.2 Interface and inter-phase fracture	198
7	.3 Replica techniques in fractography	204
7	.4 Chemical and physical analysis of fracture surfaces: interfaces and inter-phases	207
7	.5 Interfacial failure in crystalline solids: inter-granular fracture	211
7	.6 Interfacial failure in composites: mother-of-pearl	213
7	.7 Interface fracture and microstructural detail	214
8 A	spects of ductile fracture	219
8	.1 The meaning of 'ductile' fracture	219
8	.2 Necking and drawing of metals and polymers	223
	8.2.1 Pure metals	223

Cambridge University Press 978-0-521-64684-0 - Fractography: Observing, Measuring and Interpreting Fracture Surface Topography Derek Hull Table of Contents <u>More information</u>

X	Contents		
		8.2.2 Plane stress and plane strain	225
		8.2.3 Cold drawing of polymers	228
	8.3	Cup-and-cone fractures	230
	8.4	Nucleation of holes	235
		8.4.1 Microstructural heterogeneities	235
		8.4.2 Fibrillation in polymers	241
		8.4.3 Crazing and fracture	242
		8.4.4 Shear bands in amorphous metals (metallic glasses)	243
	8.5	Ductile fracture at the tip of a growing crack	244
		8.5.1 Macroscopic observations	244
		8.5.2 Separation processes at the crack tip	247
	8.6	A geological equivalent	250
	8.7	Topographical characterisation of conjugate fracture surfaces	253
	9 Cra	uck dynamic effects	259
	9.1	Introduction: the speed of sound and the speed of cracks	259
	9.2	Wallner lines and stress wave fractography	263
		9.2.1 Wallner lines	263
		9.2.2 Stress wave fractography	267
		9.2.3 Other methods of measuring the speed of cracks	270
		9.2.4 Other Wallner-line effects	272
	9.3	Discontinuous crack growth: stop-go	273
	9.4	Crack front striations generated by a crack growing under	
		cyclic loading	279
		9.4.1 Mechanical fatigue	279
		9.4.2 Shrinkage-driven cracking	283
	9.5	Transient topographical detail and environmental effects	287
		9.5.1 Transient fracture surfaces	287
		9.5.2 Effect of environment on the mechanisms of crack	
		nucleation and growth	289
		9.5.3 Chemical changes	291
	10 Ap	plications of fractography	293
	10.	1 Importance of fractography	293
	10.	2 Microstructural analysis	296
		10.2.1 Materials that are relatively brittle at ambient	
		temperatures	297
		10.2.2 Microstructure of soft materials	301
	10.	3 Development of new materials and improvement of existing	
		materials	309
		10.3.1 The role of inclusions (and microstructure) in the	
		brittleness of steels	309
		10.3.2 The toughness of composite materials	312
	10.	4 Diagnostic tool in failure analysis	327
		10.4.1 General considerations	327
		-	

Cambridge University Press 978-0-521-64684-0 - Fractography: Observing, Measuring and Interpreting Fracture Surface Topography Derek Hull Table of Contents <u>More information</u>

Contents		xi
	10.4.2 Some examples10.4.3 Case study of the failure of a storage tank	332 335
Appendix	Interpretation of Fig. 1.1: the fracture surface of a general purpose grade polystyrene	339
References		345
Index		359