Cambridge University Press

0521646413 - Elementary Geometry of Algebraic Curves: An Undergraduate Introduction
C. G. Gibson

Excerpt

More information

1
Real Algebraic Curves

Plane curves arise naturally in numerous areas of the physical sciences
(such as particle physics, engineering robotics and geometric optics) and
within areas of pure mathematics itself (such as number theory, complex
analysis and differential equations). In this introductory chapter, we will
motivate some of the basic ideas and set up the underlying language of
affine algebraic curves. That will also give us the opportunity to preview
some of the material you will meet in the later chapters.

1.1 Parametrized and Implicit Curves

At root there are two ways in which a curve in the real plane R? may be
described. The distinction is quite fundamental.

e A curve may be defined parametrically, in the form x = x(t), y = y(t).
The parametrization gives this image a dynamic structure: indeed at
any parameter value ¢t we have a tangent vector (x'(t),y'(t)) whose
length is the speed of the curve at the parameter t. An example is the
line parametrized by x = ¢, y = t, with constant speed \/5, another
parametrization such as x = 2t, y = 2t yields the same image, but at
twice the speed 2./2.

e A curve may be defined implicitly, as the set of points (x, y) in the plane
satisfying an equation f(x,y) = 0, where f(x,y) is some reasonable
function of x, y. For instance the line parametrized by x = ¢, y =t
arises from the function f(x, y) = y—x. Such a curve has no associated
dynamic structure — it is simply a set of points in the plane.

Broadly speaking, the study of parametrized curves represents the
beginnings of a major area of mathematics called differential geometry,
whilst the study of curves defined implicitly represents the beginnings
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2 Real Algebraic Curves

of another major area, algebraic geometry. It is the latter study which
provides the material for this book, though at various junctures we will
have something to say about the question of parametrization.

The common feature of many curves which appear in practice is that
they are defined implicitly by equations of the form f(x,y) = 0 where
f(x,y) is a real polynomial in the variables x, y, i.e. given by a formula
of the shape

flx,y) = Z aijxiyj
ij

where the sum is finite and the coefficients g;; are real numbers. There
is much to gain in restricting attention to such curves, since they enjoy
a number of important “finiteness’ properties. Moreover, it will be both
profitable and illuminating to extend the concepts to situations where
the coefficients a;; lie in a more general ‘ground field’. In some sense
the complexity of a polynomial f(x,y) is measured by its degree, ie.
the maximal value of i + j over the indices i, j with a;; # 0. Given a
polynomial f(x,y) we define its zero set to be

Vi ={(xy) € R : f(x,y) = 0}.

Instead of saying that a point (x,y) lies in the zero set of a curve f
we may, for linguistic variety, say that (x,y) lies on the curve f, or
that f passes through (x, y). Note that the zero set (and the degree) are
unchanged when we multiply f by a non-zero scalar. It is for that reason
that we introduce the following formal definition. A real algebraic curve
is a non-zero real polynomial f, up to multiplication by a non-zero scalar.
The more formally inclined reader may prefer to phrase this in terms
of ‘equivalence relations’. Two polynomials f, g are equivalent, written
f ~ g, when there exists a non-zero scalar A for which g = Af. It is
then trivially verified that ~ has the defining properties of an equivalence
relation: it is reflexive (f ~ f), it is symmetric (if f ~ g then g ~ f), and
it is transitive (if f ~ g and g ~ h then f ~ k). A real algebraic curve is
then formally defined to be an equivalence class of polynomials under the
relation ~. So strictly speaking, a real algebraic curve is an equivalence
set of all polynomials Af(x,y) with 4 # 0, and any polynomial in this set
is a representative for the curve. In this book we will usually abbreviate
the term ‘algebraic curve’ to ‘curve’. Curves of degree 1, 2, 3, 4, ... are
called lines, conics, cubics, quartics, .... It is a long established convention
that the curve with representative polynomial f(x, y) is referred to as the
‘curve’ f(x,y) = 0. There is no harm in this provided you remember that
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1.2 Introductory Examples 3

it is a convention, and not a shorthand for the zero set. Thus y = x and
2y = 2x represent the same curve of degree 1.

It is an unfortunate fact of life that when dealing with the simplest
possible curves of elementary geometry (such as the lines and standard
conics discussed in the next section) the distinction between curves and
their zero sets can be blurred without undue consequences. However,
as one proceeds into algebraic geometry the relation between the two
concepts becomes crucial, and leads to some of the most fundamental
results in the subject. The reader is warned, even at this very early stage,
to make a crystal clear mental distinction between the concept of a curve,
and that of its zero set.

1.2 Introductory Examples

In this section we present a small selection of curves, illustrating some
of the general concepts which will occur later. For reasons of space, it
is simply not feasible to give an account of even the more significant
situations (in the physical sciences, and within pure mathematics itself)
where curves arise, as each such situation would demand at least some
of the pertinent underlying mathematics to be developed. However, the
impatient reader, wishing to see ‘real’ curves (in the sense of ‘real’ ale),
might like to jump to Section 1.3 which presents some of the curves
arising in planar kinematics. A good guiding philosophy is to begin
at the beginning (though we will not end at the end) and work with
increasing degree. Curves of degree 1 are lines, and play a fundamental
role in understanding the geometry of general curves. We will recall their
most important attributes via a series of examples. According to the
above definition a line has the form ax + by + ¢ with at least one of a, b
non-zero.

Example 1.1 Given any two distinct points p = (p1,p2), ¢ = (41,42} in
R? there is a unique line ax + by + ¢ passing through p, q. We seek scalars
a, b, ¢ (not all zero) for which

ap1 +bpy +c =0, aqy +bgy +c=0.

Since p, g are distinct, the 2 x 3 coefficient matrix of these two linear
equations in a, b, ¢ has rank 2. By linear algebra it has kernel rank 1,
so there is a non-trivial solution (a,b,c), and any other solution is a
non-zero scalar multiple of this one. Explicitly, the line joining p, g is
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4 Real Algebraic Curves
given by
(Pt —qi)(y — p2) = (P2 — q2)(x — p1)-

Note this point well: the equation of a line is determined up to scalar
multiples by its zero set. For higher degree curves that can fail.

Example 1.2 Consider two lines a;x + byy + c¢1, azx + bay + ¢3 in R2,
The intersection points (x,y) are those points which satisfy the linear
equations

ai;x+byy+c =0, arx + bay + ¢, =0.

By linear algebra, when the determinant 6 = ajb, — axb; #* 0 these
equations have a unigue solution (x,y). Otherwise, there is no solution
(parallel lines) or a line of solutions (coincident lines).

Example 1.3 Let ! be a line, and let p be a point not on I. Then there
is a unique line m through p parallel to /. Suppose that I has equation
ax + by + ¢ = 0. It follows from the previous example that the lines m
parallel to [ are those of the form ax + by +d = 0, with 4 arbitrary. The
condition for m to pass through p then determines d uniquely.

Example 1.4 Lines can be parametrized in a natural way. Consider a
line ax + by + ¢, and distinct points p = (p1,p2), 4 = (41,42) on the line.
Then a brief calculation verifies that any point p+t(g—p) = (1 —t)p+1tq
also lies on the line. Conversely, we claim that any point » = (r1,72) on
the line has the form r = (1 —t)p + tq for some scalar t. Since p, ¢, r all
lie on the line we have

apy+bpp+¢c = 0
agi+bgy+c = 0
ari+br,+c = 0.

That is a linear system of three equations in a, b, c. Since at least one of
a, b is non-zero, the system has a non-trivial solution. By linear algebra,
the 3 x 3 matrix of coefficients is singular, so the rows (p1, p2, 1), (41,42, 1),
(r1,r2, 1) are linearly dependent. However, the first two rows are linearly
independent (as p, g are distinct) so the third row is a linear combination
of the first two, ie. (r1,72,1) = s(p1,p2, 1) + t(q1, 92, 1) for some scalars
s, t. That means r = sp+tgand 1 =s+t¢t sor =(1—1t)p+1tq, as
required.
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1.2 Introductory Examples 5

Fig. 1.1. Constructions of standard conics

Note that the parametrization of a line depends on the choice of points
p, q. Given two distinct points p = (p1,p2), 9 = (91,92), the parametrized
line through p, q is the specific parametric curve given by the above
example, namely x = (1 —t)p; +tq1, y = (1 — t)p2 + tqa.

Example 1.5 Conics will be a recurrent theme in this text. The most
familiar conic by far is the circle, defined metrically as the locus of points
(x,y) whose distance from a fixed point (@,b) in the plane (the centre)
takes a constant value r > O (the radius). A circle is thus the zero set
of a polynomial (x — a)?> + (y — b)?> = r%. The ‘standard’ parametrization
of the circle is x = a+rcost, y = b+ rsin t, but we will meet other
parametrizations later.

Example 1.6 The reader has probably met the ‘standard conics’ of ele-
mentary geometry via a metrical construction going back to the classical
Greeks. One is given a line L (the directrix), a point F (the focus) not
on L, and a variable point P whose distance from F is proportional to
its distance from L. O denotes the unique point on L for which L is
perpendicular to the line through O, F. (See Figure 1.1.)

The locus of P is known as a ‘parabola’, an ‘ellipse’, or a ‘hyperbola’
according as the constant of proportionality e (the eccentricity) is = 1,
< 1 or > 1. The fact that P lies on a conic is demonstrated by taking O
to be the origin, L to be the y-axis, and the line OF to be the x-axis (with
F on the positive axis). Then, setting F = (2a,0) with a > 0, the condition
on P = (x, y) is (x—2a)?>+y? = ¢*x2, which is indeed a conic. For instance
in the case e = 1 of a parabola this becomes 4a(a — x) + y*> = 0: the
translation x = X +a, y = Y then yields the standard parabola Y? = 4aX
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6 Real Algebraic Curves

P

(x(1),y(®)

Fig. 1.2. Construction of pedal curves

with focus F = (a,0) and directrix X = —a. In Chapter 4 we will have
more to say about the process of reducing polynomials to such ‘normal’
forms by applying translations, and more generally ‘affine mappings’

Example 1.7 A regular parameter of a parametrized curve x = x(t),
y = y(t) is a parameter ¢ for which the tangent vector (x'(t),y'(t)) is
non-zero. The unique line through P = (x(¢), y(¢)) in the direction of the
tangent vector is the tangent line to the parametrized curve at t, given
parametrically as x = x(t) + Ax'(t), y = y(t) + Ay'(¢). It is the line

Y (t)x — X' (t)y + {x'(t)y(t) — x(8)y'(t)} = 0.

Tangent lines play a fundamental role in studying parametrized curves.
We will discuss tangent lines to algebraic curves in Chapter 7 and relate
them to the concept just introduced for parametrized curves. Numerous
interesting constructions are based on the tangent lines to parametrized
curves, and give rise to a zoo of interesting curves. One such construction
is that of the ‘pedal’, of considerable importance in geometric optics and
kinematics. Suppose we are given a regular parametrized curve x = x(t),
y = y(t), i.e. one for which every parameter ¢ is regular, and a fixed point
P = (o, B), the pedal point. Then the pedal curve of the curve with respect
to P is the parametrized curve obtained by associating to the parameter
t the projection P(t) of P onto the tangent line at t. (Figure 1.2.)

In practice, given the tangent line, you can write down the line per-
pendicular to it through P and find the intersection P(t) of the two lines.
(Recall from elementary geometry that the lines perpendicular to a given
line ax+ by + ¢ = 0 are the lines of the form —bx +ay+d = 0.) Here is a
deceptively simple example giving rise to a number of interesting cubics.
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1.2 Introductory Examples 7

Fig. 1.3. Pedals of a parabola

Example 1.8 Consider the standard parabola y> = 4ax with a > 0,
parametrized as x = at?, y = 2at. We will show that the pedal curve
with respect to the point P = («, 0) satisfies the equation of a cubic. The
tangent line at t is x — ty + at> = 0, and the perpendicular line through
P is tx + y —at = 0. The parametrized pedal is obtained by setting these
expressions equal to zero, and then solving for x, y in terms of ¢, to
obtain

_(a—a)? _ Ha+ar?)

1+ YT i+

To obtain a polynomial satisfied by the points on the pedal we eliminate
t instead, to obtain the cubic x(x —«)? + y?(a— o+ x) = 0. More precisely
we have obtained a family of cubics, depending on «. The zero set of
some of the pedal curves are illustrated in Figure 1.3.

The first thing to notice is that P always lies on the pedal, and is
in some visual sense ‘singular’. Thus for &« < 0 the curve has a loop,
which crosses itself at P, for « = O the loop contracts down to a point,
giving a ‘cusp’ at P, and for « > 0 the curve has an isolated point at
P. Such ‘singular’ points play a very basic role in understanding the
geometry of a curve, and will be studied in some detail in Chapter 6.
The cubic x* + y*(x 4 a) = 0 obtained when « = 0 is called the cissoid
of Diocles after the classical Greek mathematician Diocles, who derived
its equation when solving the problem of ‘doubling the cube’; Newton
discovered a mechanical construction for the cissoid, which we will meet
in Section 1.3. « = 0 is not the only exceptional value of . When a = a,
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8 Real Algebraic Curves

Fig. 1.4. Bézier curve with control points by, by, ba, b3

i.e. the pedal point is the focus F of the parabola, the equation factorizes
as x{(x —a)* + y2} = 0, whose zero set is simply the y-axis together with
the point F. Another exceptional value is « = —a, i.e. the pedal point is
the point of intersection of the axis and directrix of the parabola: the
pedal curve is then known as the right strophoid, and is characterized
geometrically within the family by the fact that the tangents to the pedal
curve at P are perpendicular.

Cubic curves play important roles in numerous areas of mathematics
and the physical sciences. An interesting class of naturally parametrized
cubics arises in Computer Aided Design (CAD). The idea is as follows.
One is given a plane ‘curve’, for instance part of an artist’s visualization
of an industrial product, and one seeks a useful mathematical model
for this curve which can be handled on a computer. The underlying
idea was developed in the late 1950s by two design engineers working
for rival French car companies, namely Beézier (working for Renault)
and de Casteljau (working for Citréen). A first crude step is to take
a sequence of points by, by, ..., by, on the curve and interpolate a
polynomially parametrized curve. However, this process is intrinsically
unsatisfactory: as n increases, so the degrees of the polynomials increase,
and the interpolating curve may oscillate wildly. The idea is to control
this oscillation by specifying the tangent direction at each point. One
way of doing this is to associate to each point by another point by i
and stipulate that the tangent direction of the interpolating curve at by,
should be the direction of the line segment joining by, by Let us
illustrate this for the case of two points by, b. In that case there are four
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1.2 Introductory Examples: Exercises 9

control points by, by, by, b3 to which is associated the Bézier curve defined
by

B(t) = (1 — t)*bg + 3t(1 — )by + 313(1 — )by + b,

Note that B(0) = by, B(1) = by, B'(0) = 3(b) — by), B'(1) = 3(bs — b3)
so the curve passes through the points by, by and has tangent directions
by — by, by — b3 at those points. (Figure 1.4) What is not obvious is that
Bézier curves are algebraic. For the moment we will content ourselves
with a numerical example. Later (Example 14.4) when we have a little
more algebra available, we will be able to prove this in full generality.

Example 1.9 In the above discussion take by = (0,0), b; = (1/3,0),
by = (2,2), by = (1,1/3) so B(t) = (t + 3,8 + t3). Write x = t + ¢,
y = t> + t*. Note that y = tx. Eliminating t we see that each point (x, y)
on the Bézier cubic lies on the cubic curve x* = y(x + y). Conversely,
we will show that any point (x, y) satisfying the equation x3 = y(x + y)
necessarily has the form x = t+%, y = t +t> = tx for some real number
t. Indeed if x # O define t by the relation y = tx; then, substituting for y
we obtain x = t + ¢, and hence y = tx = t?> + . Finally, if x = 0 then
y =0 and we can choose either t =0 or t = —1.

Numerous examples of quartic curves arise in the physical sciences.
For the moment we will content ourselves with a particularly interesting
family of quartics.

Example 1.10 The unit circle x? + y? = 1 is parametrized as x = cost,
y = sint. We will find the pedal curve with respect to a point p = (,0)
on the x-axis with o > 0. The tangent line at ¢ is (cos t)x+(sint)y—1 =10,
and the perpendicular line through p is sint(x — «) — (cost)y = 0. An
equation for the pedal can be found by solving these relations for sint,
cost, and then substituting in the identity cos?t + sin?t = 0. The result
is the quartic curve

{x(x—a) + P = (x—a) +?

known as a limacon. The zero set of the limacon (Figure 1.5) depends
on the value of a. The point p always lies on the pedal, and is in some
sense ‘singular’. (Compare with the pedals of the parabola.) For o > 1
the curve has two loops, whilst for & < 1 it has just one. The intermediate
case o = 1 gives rise to a curve with a ‘cusp’, known as a cardioid.
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10 Real Algebraic Curves

Fig. 1.5. The three forms of a limacon

Exercises

1.2.1  Show that the Bézier curve defined by the points by = (—9,0),
by = (-9,-1), by = (—6,-2), b3y = (—8,—2) is given paramet-
rically by x = 3(t> — 3), y = t(t* — 3). By eliminating t from
these relations, show that every point lies on the zero set of
Tschirnhausen’s cubic 27y* = x*(x +9).

122 A parametrized curve is defined by x(t) = t* + £, y(t) = £3 + t*.
Find a polynomial f(x,y) of degree 4 such that f((t),y(t)) =0
for all t. (It helps to observe that y = tx.) Conversely, show that
for any point (x,y) with f(x,y) = 0 there exists a real number ¢
with x = x(t), y = y(t). (Again, it helps to observe that you seek
a ¢t for which y = tx.)

1.2.3  Show that there exists a cubic curve f(x, y) such that every point
on the parametrized curve x(t) = 1+ 2, y(t) = t + 13 satisfies the
equation f(x(t), y(t)) = 0. Conversely, show that for any point
(x,y) with f(x,y) = O, with one exception, there exists a real
number ¢ with x = x(t), y = y(¢).

1.24 Let a > 0, let C be the circle of radius a with centre (a,0) and
let D be the line x = 2a. For each line L through the origin O
(except the y-axis) let Cy, Dy, denote the points where L meets C,
D respectively, and let By, denote the point on the line segment
joining O, Dy for which OBy = C.D;. Taking t to be the angle
between L and the x-axis, find the coordinates of Cy, Dy, in terms
of t, and hence show that the locus of By has the parametric
form x(t) = 2a sin?t, y(t) = 2a sin’ttant with —n/2 <t < 1/2.
Verify that every point on this parametrized curve lies on the
zero set of the cubic x? = (2a — x)y%. Conversely, show that any
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