### **Conservation Biology**

This beautifully illustrated textbook introduces students to conservation biology, the science of preserving biodiversity. Conservation biology is fast emerging as a major new discipline, which incorporates biological principles in the design of effective strategies for the sustainable management of populations, species and entire ecosystems. This book begins by taking the reader on a tour of the many and varied ecosystems of our planet, providing a setting in which to explore the factors that have led to the alarming loss of biodiversity that we now see. In particular the fundamental problems of habitat loss and fragmentation, habitat disturbance and the non-sustainable exploitation of species in both aquatic and terrestrial ecosystems are explored. The methods that have been developed to address these problems, from the most traditional forms of conservation, creation of protected areas and single-species programmes, to new approaches at genetic to landscape scales are then discussed, showing how the science can be put into practice.

ANDREW S. PULLIN is a Senior Lecturer in the School of Biosciences at the University of Birmingham, where he has been teaching Environmental Biology, Ecology and Conservation Biology for a number of years. His research interests include the ecology and conservation of invertebrates, the assessment of biodiversity at species and genetic levels, and the relationship between conservation science and practice. His work has taken him to many exotic locations, including the tropics and the Arctic, where he has obtained first-hand experience of a wide range of conservation problems. In addition to his academic work, he is also involved in the practical aspects of conservation, and serves on the council of several nongovernmental conservation organisations. He is involved in the implementation of several species and habitat action plans, placing him in an excellent position to consider the relationship between conservation problems, conservation science and conservation action. Andrew is the Editor of Ecology and Conservation of Butterflies (1995) and the Journal of Insect Conservation.

# **Conservation Biology**

Andrew S. Pullin



PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© A. S. Pullin 2002

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2002 Reprinted 2004

Printed in the United Kingdom at the University Press, Cambridge

Typeface Swift 9.5/12.25pt. System QuarkXPress<sup>™</sup> [SE]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Pullin, Andrew S. Conservation biology / Andrew S. Pullin. p. cm. Includes bibliographical references (p. ). ISBN 0 521 64284 1 (hardback) – ISBN 0 521 64482 8 (pbk.) 1. Conservation biology. I. Title. QH75.P85 2002 333.95'16-dc21 2001037844

ISBN 0 521 64284 1 hardback ISBN 0 521 64482 8 paperback

To George and his generation

## Contents

Preface

xi

#### Part I

| Chapter I                                                     | The natural world      | 3  |
|---------------------------------------------------------------|------------------------|----|
| What have we got to lose?<br>Diversity among living organisms |                        | 3  |
|                                                               |                        | 5  |
| Patterns of bi                                                | 7                      |    |
| The utility of the natural world<br>The wild experience       |                        | 15 |
|                                                               |                        | 16 |
| Summary                                                       |                        | 17 |
| Chapter 2                                                     | Major world ecosystems | 19 |
| The ecosystem                                                 | n concept              | 19 |
| Terrestrial environments                                      |                        | 20 |
| Montane environments                                          |                        | 42 |
| Aquatic environments                                          |                        | 44 |
| Summary                                                       |                        | 48 |

#### Part 2

| Chapter 3                                                                                         | The human impact               | 53  |
|---------------------------------------------------------------------------------------------------|--------------------------------|-----|
| The rise of human populations<br>Current human impacts<br>The human impact on species extinctions |                                | 53  |
|                                                                                                   |                                | 66  |
|                                                                                                   |                                | 72  |
| Summary                                                                                           |                                | 74  |
| Chapter 4                                                                                         | Effects of habitat destruction | 76  |
| Introduction                                                                                      |                                | 76  |
| Patterns of habitat destruction                                                                   |                                | 78  |
| Biotic effects of habitat fragmentation<br>Contraction in species range                           |                                | 80  |
|                                                                                                   |                                | 99  |
| Summary                                                                                           |                                | 100 |
| Chapter 5                                                                                         | Effects of habitat disturbance | 102 |
| Introduction                                                                                      |                                | 102 |
| Chemical pollution                                                                                |                                | 102 |
| Introduction of exotic species                                                                    |                                | 108 |
| Introduction of disease                                                                           |                                | 116 |

| Genetically modified organisms<br>Physical disturbance of ecosystem dynamics<br>Is disturbance always bad?<br>Summary |                     | 120<br>121<br>122<br>122 |
|-----------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------|
| Chapter 6 N                                                                                                           | Jon-sustainable use | 122                      |
| What is sustainable use?                                                                                              |                     | 124                      |

| 124 |
|-----|
| 124 |
| 135 |
| 136 |
|     |

#### Part 3

| Chapter 7                             | The rise of conservation biology                     | 141 |
|---------------------------------------|------------------------------------------------------|-----|
| Introduction                          |                                                      | 141 |
| Early conserv                         | ationists                                            | 142 |
| The emergen                           | ce of conservation biology as a science              | 144 |
| The Rio Sumr                          | nit and Biodiversity Convention                      | 147 |
| Conservation                          | biology and the conservation movement                | 148 |
| Summary                               |                                                      | 148 |
| Chapter 8                             | Selecting protected areas                            | 150 |
| Introduction                          |                                                      | 150 |
| What is a pro                         | tected area?                                         | 151 |
| History of pro                        | otected area designation                             | 153 |
| Criteria for m                        | easuring conservation value of areas                 | 156 |
| Practical appr                        | Practical approaches to protected area designation   |     |
| Summary                               |                                                      | 171 |
| Chapter 9                             | Design and management of protected areas             | 173 |
| Designing pro                         | otected areas                                        | 173 |
| Managing pro                          | otected areas                                        | 176 |
| Management                            | of semi-natural communities                          | 178 |
| Monitoring cl                         | hange in protected areas                             | 193 |
| Summary                               |                                                      | 197 |
| Chapter 10                            | Protecting species. I. In situ conservation          | 199 |
| Commoness a                           | and rarity among species                             | 199 |
| Assessing and                         | l categorising threat to species from human activity | 200 |
| Managing sm                           | all populations                                      | 207 |
| Measuring sp                          | ecies decline                                        | 210 |
| Genetic mana                          | agement of small populations                         | 212 |
| Genetic mana                          | agement of species                                   | 216 |
| Sustainable harvesting of populations |                                                      | 222 |
| Summary                               |                                                      | 226 |

CONTENTS

ix

| Chapter I I                                            | Protecting species. II. <i>Ex situ</i> conservation and reintroduction | 227 |
|--------------------------------------------------------|------------------------------------------------------------------------|-----|
| What is ex situ o                                      | conservation and when is it necessary?                                 | 227 |
| Fx situ conserva                                       | ation of plants                                                        | 228 |
| Ex situ conserva                                       | ation of animals: captive breeding                                     | 230 |
| Species reintroduction<br>Direct species translocation |                                                                        | 234 |
|                                                        |                                                                        | 244 |
| Population reir                                        | nforcement                                                             | 246 |
| Overview                                               |                                                                        | 249 |
| Summary                                                |                                                                        | 251 |
| Chapter 12                                             | Landscape scale conservation                                           | 252 |
| 'Patchiness' in                                        | the landscape                                                          | 252 |
| Landscape ecol                                         | ogy and conservation                                                   | 253 |
| Enhancing spe                                          | cies movement in the landscape                                         | 256 |
| Conservation in                                        | n the urban landscape                                                  | 261 |
| Conserving eco                                         | osystem function                                                       | 264 |
| Ecosystem man                                          | nagement                                                               | 265 |
| Management a                                           | t the landscape scale: the UK Natural Areas                            |     |
| concept                                                |                                                                        | 266 |
| Summary                                                |                                                                        | 268 |
| Chapter 13                                             | Conserving the evolutionary process                                    |     |
|                                                        | (a longer-term view of conservation)                                   | 270 |
| Short-term cris                                        | is conservation                                                        | 270 |
| Conservation a                                         | nd the control of nature                                               | 271 |
| The use of phyl                                        | ogeography in conservation                                             | 272 |
| Using genetics                                         | to plan at evolutionary and biogeographical scales                     | 275 |
| Linking genetic                                        | c diversity with community diversity                                   | 279 |
| The use of syste                                       | ematics in conservation                                                | 281 |
| Conserving the                                         | e evolutionary process                                                 | 282 |
| Summary                                                |                                                                        | 283 |
| Chapter 14                                             | Ecological restoration                                                 | 284 |
| Introduction                                           |                                                                        | 284 |
| Elements of pra                                        | actical restoration                                                    | 288 |
| Case studies in                                        | restoration                                                            | 291 |
| Where should a                                         | restoration take place?                                                | 297 |
| Agri-environm                                          | ent schemes                                                            | 298 |
| Habitat creatio                                        | n                                                                      | 299 |
| The good and t                                         | he bad of ecological restoration as conservation                       |     |
| practice                                               |                                                                        | 302 |
| Summary                                                |                                                                        | 303 |
| Chapter 15                                             | Putting the science in to practice                                     | 305 |
| Introduction                                           |                                                                        | 305 |
| The contrasting                                        | g positions of the practitioner and the scientist                      | 306 |

#### x CONTENTS

| Evidence-based conservation: lessons from medicine and public |     |
|---------------------------------------------------------------|-----|
| health                                                        | 308 |
| Formulation of action plans: an opportunity to bridge the gap | 312 |
| Models for combining science and practice                     | 320 |
| Taking action                                                 | 323 |
| Summary                                                       | 327 |
|                                                               |     |
| References                                                    | 329 |
| Index                                                         | 341 |

### Preface

At the time of writing I have just spent the last 24 hours or so celebrating the coming of the year 2001, the real new Millennium. Having to stay at home looking after my young son and therefore being unable to go out to any parties this year, I watched the New Year celebrations take place around the globe beamed by satellite to my TV set. One overpowering message that came to me, and I know to many others, is how closely connected we have now become and how much smaller the Earth feels as a result. Now more than ever before, it should be obvious to all just how limited the earth's resources are and how crowded the planet is becoming. We need to manage these resources very skilfully if we are to prosper as a species.

This book is intended as an introduction to the science of conservation biology: a science that I believe will become one of the most important to us in the twenty-first century. It seeks to provide the information about our natural world that will enable the sustainable management of genes, species and communities and to maintain the biodiversity that characterises the richness of our planet. We have a significant challenge on our hands, but we must face it head-on and develop our knowledge rapidly to give us the tools to do the job.

The text is written primarily as an aid to undergraduate-level teaching, supporting either short courses or modules in conservation biology within broader degree programmes. It is written with the presumption that readers have a fundamental knowledge of basic biology and some ecology. The book is based on the course in conservation biology that I taught first at Keele University and lately at The University of Birmingham, UK. One of the key motives for writing this text was that in teaching conservation biology I was frustrated by the lack of a text that reflected European as well as North American conservation issues. Europe is more crowded and has a longer history of human occupation than most of the rest of the world and most of its ecosystems have been fundamentally altered and degraded for millennia. Other continents may be able to learn by our mistakes. This book has a global perspective but includes many examples from Europe that may be indicators of problems to come elsewhere.

The content of the book is deliberately confined to the science of conservation biology and the mechanisms by which the science can influence practical actions. There is no attempt to cover wider conservation issues involving politics, economics and social sciences. In my view these subjects are often covered inadequately in conservation biology texts and I did not want to repeat the mistakes. There are a number of textbooks dedicated to these aspects of conservation and some are listed as further reading.

I have separated the text into three basic sections. The first two chapters introduce biodiversity and the characteristic ecosystems of the planet. These chapters may be too basic for some who will want to skip

xii PREFACE

over them, but I find that many students need this basic information to fully appreciate more complex conservation issues. The second section (Chapters 3–6) explores the factors that have led to problems in conservation and threats to biodiversity: loss and fragmentation of habitats, habitat disturbance and non-sustainable exploitation of species. The final section (Chapters 7–15) explores the development of conservation biology, the conservation actions that have been taken and those that might be considered in the future. Early chapters in this section cover the most traditional forms of conservation, formation of protected areas and single species programmes and later chapters move on to developing aspects of the science, exploring both strengths and weaknesses in our knowledge that underpins conservation strategies.

I am very grateful to my undergraduates for giving me feedback on earlier drafts of the manuscript and for spotting minor mistakes. My thanks go to Ward Cooper, Barnaby Willetts, Jayne Aldhouse and Shana Coates at Cambridge University Press for encouragement and advice and to many others who have provided me with information and allowed me to present their data. My greatest debt goes to my partner Teri Knight for her unceasing support and expert comments on the manuscript.

> Andrew S. Pullin Birmingham 1st January 2001

The publisher has used its best endeavours to ensure that the URLs for external websites referred to in this book are correct and active at the time of going to press. However, the publisher has no responsibility for the websites and can make no guarantee that a site will remain live or that the content is or will remain appropriate.