PRINCIPLES OF LASERS AND OPTICS

Principles of Lasers and Optics describes both the fundamental principles of lasers and the propagation and application of laser radiation in bulk and guided wave components. All solid state, gas and semiconductor lasers are analyzed uniformly as macroscopic devices with susceptibility originated from quantum mechanical interactions to develop an overall understating of the coherent nature of laser radiation.

The objective of the book is to present lasers and applications of laser radiation from a macroscopic, uniform point of view. Analyses of the unique properties of coherent laser light in optical components are presented together and derived from fundamental principles, to allow students to appreciate the differences and similarities. Topics covered include a discussion of whether laser radiation should be analyzed as natural light or as a guided wave, the macroscopic differences and similarities between various types of lasers, special techniques, such as super-modes and the two-dimensional Green's function for planar waveguides, and some unusual analyses.

This clearly presented and concise text will be useful for first-year graduates in electrical engineering and physics. It also acts as a reference book on the mathematical and analytical techniques used to understand many opto-electronic applications.

WILLIAM S. C. CHANG is an Emeritus Professor of the Department of Electrical and Computer Engineering, University of California at San Diego. A pioneer of microwave laser and optical laser research, his recent research interests include electro-optical properties and guided wave devices in III–V semiconductor heterojunction and multiple quantum well structures, opto-electronics in fiber networks, and RF photonic links.

Professor Chang has published over 150 research papers on optical guided wave research and five books. His most recent book is *RF Photonic Technology in Optical Fiber Links* (Cambridge University Press, 2002).

PRINCIPLES OF LASERS AND OPTICS

WILLIAM S. C. CHANG

Professor Emeritus Department of Electrical Engineering and Computer Science University of California San Diego

> PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

> > CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge, CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

> > > http://www.cambridge.org

© Cambridge University Press 2005

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2005

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 11/14 pt. *System* $LAT_{EX} 2_{\mathcal{E}}$ [TB]

A catalog record for this book is available from the British Library

Library of Congress Cataloging in Publication data Chang, William S. C. (William Shen-chie), 1931– Principles of lasers and optics / William Shen Chie Chang. p. cm. Includes bibliographical references and index. ISBN 0 521 64229 9 (alk. paper) 1. Lasers. 2. Photonics. 3. Optical wave guides. 4. Quantum optics. I. Title. TK1675 C485 2005 621.36'6 – dc22 2004054604

ISBN 0 521 64229 9 hardback

The publisher has used its best endeavors to ensure that the URLs for external websites referred to in this book are correct and active at the time of going to press. However, the publisher has no responsibility for the websites and can make no guarantee that a site will remain live or that the content is or will remain appropriate.

Contents

	Pref	reface				
1	Scalar wave equations and diffraction of laser radiation			1		
	1.1	Introd	uction	1		
	1.2	1.2 The scalar wave equation				
	1.3	—				
		function – Kirchhoff's diffraction formula				
		1.3.1	The general Green's function G	6		
		1.3.2	Green's function, G_1 , for U known on a planar			
			aperture	7		
		1.3.3	Green's function for ∇U known on a planar			
			aperture, G_2	11		
		1.3.4	The expression for Kirchhoff's integral in			
			engineering analysis	11		
		1.3.5	Fresnel and Fraunhofer diffraction	12		
	1.4	Applications of the analysis of TEM waves				
		1.4.1	Far field diffraction pattern of an aperture	13		
		1.4.2	Fraunhofer diffraction in the focal plane of a lens	18		
		1.4.3	The lens as a transformation element	21		
		1.4.4	Integral equation for optical resonators	24		
	1.5 Superposition theory and other mathematica		position theory and other mathematical techniques			
		derived from Kirchhoff's diffraction formula		25		
	References					
2	Gau	Gaussian modes in optical laser cavities and Gaussian beam optics				
	2.1	Modes in confocal cavities		36		
		2.1.1	The simplified integral equation for confocal cavities	37		
		2.1.2	Analytical solutions of the modes in confocal cavities	38		
			Properties of resonant modes in confocal cavities	39		
		2.1.4	Radiation fields inside and outside the cavity	45		

vi			Contents			
		2.1.5	Far field pattern of the TEM modes	46		
		2.1.6	General expression for the TEM_{lm} modes	46		
		2.1.7	Example illustrating the properties of confocal			
			cavity modes	47		
	2.2	Modes	s in non-confocal cavities	48		
		2.2.1	Formation of a new cavity for known modes of			
			confocal resonators	49		
		2.2.2	Finding the virtual equivalent confocal resonator for a			
			given set of reflectors	50		
		2.2.3	Formal procedure to find the resonant modes in			
			non-confocal cavities	52		
			Example of resonant modes in a non-confocal cavity	53		
			ian beam solution of the vector wave equation	54		
	2.4	Propagation and transformation of Gaussian beams				
			BCD matrix)	57		
		2.4.1	Physical meaning of the terms in the Gaussian			
			beam expression	57		
		2.4.2	Description of Gaussian beam propagation by			
			matrix transformation	58		
			Example of a Gaussian beam passing through a lens	61		
		2.4.4	Example of a Gaussian beam passing through			
			a spatial filter	62		
		2.4.5	Example of a Gaussian beam passing through a			
			prism	64		
			Example of focusing a Gaussian beam	66		
			Example of Gaussian mode matching	67		
	2.5		s in complex cavities	68		
			Example of the resonance mode in a ring cavity	69		
		Refere		71		
3			ve modes and their propagation	72		
	3.1	-	metric planar waveguides	74		
		3.1.1	TE and TM modes in planar waveguides	75		
	3.2	-	anar waveguide modes	77		
		3.2.1	TE planar guided wave modes	77		
		3.2.2	TE planar guided wave modes in a symmetrical			
			waveguide	78		
		3.2.3	1 6	80		
		3.2.4		81		
		3.2.5	TE planar substrate modes	83		
		3.2.6	TE planar air modes	83		

			Contents	vii
	3.3	TM planar waveguide modes		85
		3.3.1	-	85
		3.3.2	TM planar guided wave modes in a symmetrical	
			waveguide	86
		3.3.3	Cut-off condition for TM planar guided wave modes	87
		3.3.4	Properties of TM planar guided wave modes	87
		3.3.5	TM planar substrate modes	89
		3.3.6	TM planar air modes	89
	3.4	Gener	ralized properties of guided wave modes in	
		plana	r waveguides and applications	90
		3.4.1	Planar guided waves propagating in other directions in	
			the <i>yz</i> plane	91
		3.4.2	Helmholtz equation for the generalized guided wave	
			modes in planar waveguides	91
		3.4.3	Applications of generalized guided waves in	
			planar waveguides	92
	3.5	Recta	ngular channel waveguides and effective	
		index analysis		
			Example for the effective index method	102
		3.5.2	Properties of channel guided wave modes	103
		3.5.3		
			in WDM systems	103
	3.6	6 Guided wave modes in single-mode round optical		
		fibers		106
			Guided wave solutions of Maxwell's equations	107
			Properties of the guided wave modes	109
			Properties of optical fibers	110
			Cladding modes	111
	3.7		ation of guided wave modes	111
		Refere		113
4			ve interactions and photonic devices	114
	4.1		rbation analysis	115
		4.1.1	Fields and modes in a generalized waveguide	115
			Perturbation analysis	117
		4.1.3		119
	4.2			
			ne acousto-optical deflector	120
		4.2.1	6 6 6	120
		4.2.2	1 1 2	
			and analyzer	125

viii		Contents			
	4.3	Propagation of modes in parallel waveguides – the coupled			
		modes	s and the super-modes	130	
		4.3.1	Modes in two uncoupled parallel waveguides	130	
		4.3.2	Analysis of two coupled waveguides based on modes of		
			individual waveguides	131	
		4.3.3	The directional coupler, viewed as coupled individual		
			waveguide modes	133	
		4.3.4	Directional coupling, viewed as propagation of		
			super-modes	136	
		4.3.5	Super-modes of two coupled non-identical waveguides	137	
	4.4	Propagation of super-modes in adiabatic branching waveguides			
			e Mach–Zehnder interferometer	138	
			Adiabatic Y-branch transition	138	
		4.4.2	Super-mode analysis of wave propagation in a		
			symmetric Y-branch	139	
		4.4.3	Analysis of wave propagation in an asymmetric		
			Y-branch	141	
			Mach–Zehnder interferometer	142	
	4.5		gation in multimode waveguides and multimode		
			erence couplers	144	
-		Refere		148	
5		-	ic properties of materials from stimulated	1.40	
		ad absorption	149		
	5.1		review of basic quantum mechanics	150	
		5.1.1	5 51 1	1.50	
		510	of quantum mechanics	150	
			Expectation value	151	
			Summary of energy eigen values and energy states	152	
	5.0		Summary of the matrix representation	153	
	3.2	Time dependent perturbation analysis of ψ and the induced transition probability			
		5.2.1	Time dependent perturbation formulation	156 156	
		5.2.1	Electric and magnetic dipole and electric quadrupole	150	
		J.2.2	approximations	159	
		5.2.3	Perturbation analysis for an electromagnetic field with	157	
		5.2.5	harmonic time variation	159	
		5.2.4	Induced transition probability between	157	
		<i>3.2</i> .т	two energy eigen states	161	
	5.3	Macro	oscopic susceptibility and the density matrix	161	
	0.0	5.3.1	Polarization and the density matrix	162	
			Equation of motion of the density matrix elements	164	
				101	

		Contents	ix
		5.3.3 Solutions for the density matrix elements	166
		5.3.4 Susceptibility	167
		5.3.5 Significance of the susceptibility	168
		5.3.6 Comparison of the analysis of χ with the quantum	
		mechanical analysis of induced transitions	169
	5.4	Homogeneously and inhomogeneously broadened transitions	170
		5.4.1 Homogeneously broadened lines and their saturation	171
		5.4.2 Inhomogeneously broadened lines and their saturation	173
		References	178
6	Soli	d state and gas laser amplifier and oscillator	179
	6.1	Rate equation and population inversion	179
	6.2	Threshold condition for laser oscillation	181
	6.3	Power and optimum coupling for CW laser oscillators with	
		homogeneous broadened lines	183
	6.4	Steady state oscillation in inhomogeneously broadened lines	186
	6.5	Q-switched lasers	187
	6.6	Mode locked laser oscillators	192
		6.6.1 Mode locking in lasers with an inhomogeneously	
		broadened line	193
		6.6.2 Mode locking in lasers with a homogeneously	
		broadened line	196
		6.6.3 Passive mode locking	197
	6.7	Laser amplifiers	198
	6.8	Spontaneous emission noise in lasers	200
		6.8.1 Spontaneous emission: the Einstein approach	201
		6.8.2 Spontaneous emission noise in laser amplifiers	202
		6.8.3 Spontaneous emission in laser oscillators	205
		6.8.4 The line width of laser oscillation	207
		6.8.5 Relative intensity noise of laser oscillators	210
		References	211
7	Sem	iconductor lasers	212
	7.1	Macroscopic susceptibility of laser transitions	
		in bulk materials	214
		7.1.1 Energy states	215
		7.1.2 Density of energy states	215
		7.1.3 Fermi distribution and carrier densities	216
		7.1.4 Stimulated emission and absorption and susceptibility	
		for small electromagnetic signals	218
		7.1.5 Transparency condition and population inversion	221
	7.2	Threshold and power output of laser oscillators	221
		7.2.1 Light emitting diodes	223

х

Contents				
7.3	Susceptibility and carrier densities in quantum well			
	semic	224		
	7.3.1	Energy states in quantum well structures	225	
	7.3.2	Density of states in quantum well structures	226	
	7.3.3	Susceptibility	227	
	7.3.4	Carrier density and Fermi levels	228	
	7.3.5	Other quantum structures	228	
7.4	.4 Resonant modes of semiconductor lasers			
	7.4.1	Cavities of edge emitting lasers	229	
	7.4.2	Cavities of surface emitting lasers	234	
7.5	5 Carrier and current confinement in semiconductor lasers			
7.6	Direct	modulation of semiconductor laser output by		
	curren	it injection	237	
7.7	Semic	onductor laser amplifier	239	
7.8	Noise	in semiconductor laser oscillators	242	
	Refere	ences	243	
Index			245	

Preface

When I look back at my time as a graduate student, I realize that the most valuable knowledge that I acquired concerned fundamental concepts in physics and mathematics, quantum mechanics and electromagnetic theory, with specific emphasis on their use in electronic and electro-optical devices. Today, many students acquire such information as well as analytical techniques from studies and analysis of the laser and its light in devices, components and systems. When teaching a graduate course at the University of California San Diego on this topic, I emphasize the understanding of basic principles of the laser and the properties of its radiation.

In this book I present a unified approach to all lasers, including gas, solid state and semiconductor lasers, in terms of "classical" devices, with gain and material susceptibility derived from their quantum mechanical interactions. For example, the properties of laser oscillators are derived from optical feedback analysis of different cavities. Moreover, since applications of laser radiation often involve its well defined phase and amplitude, the analysis of such radiation in components and systems requires special care in optical procedures as well as microwave techniques. In order to demonstrate the applications of these fundamental principles, analytical techniques and specific examples are presented. I used the notes for my course because I was unable to find a textbook that provided such a compact approach, although many excellent books are already available which provide comprehensive treatments of quantum electronics, lasers and optics. It is not the objective of this book to present a comprehensive treatment of properties of lasers and optical components.

Our experience indicates that such a course can be covered in two academic quarters, and perhaps might be suitable for one academic semester in an abbreviated form. Students will learn both fundamental physics principles and analytical techniques from the course. They can apply what they have learned immediately to applications such as optical communication and signal processing. Professionals may find the book useful as a reference to fundamental principles and analytical techniques.