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Basic issues in nonequilibrium
statistical mechanics

Perhaps due to its technical complexity, oftentimes one sees in research papers

on nonequilibrium quantum field theory (NEqQFT) more emphasis placed on

the field-theoretical formalisms than the ideas these sophisticated techniques

attempt to capture, or the issues such problems embody. All the more so, we need

some basic understanding of the important issues and concepts in nonequilibrium

statistical mechanics (NEqSM), and how they are manifested in the context of

quantum field theory. Many important advances in this field came from asking

such questions and finding out how to answer them in the language of quantum

field theory. Because of this somewhat skewed existing emphasis in NEqQFT,

and since we do not assume the reader to have had a formal course on NEqSM

before, we shall give a brief summary of the basic concepts of NEqSM relevant to

the field-theoretical processes discussed in this book. Many fine monographs and

reviews written on this subject take a more formal mathematical approach. Since

our purpose here is to familiarize readers with these issues and their subtleties,

rather than training them to work in the rich field of NEqSM (which includes

in addition to the traditional subject matter such as the projection operator

formalism and open system concepts, also current topics at their foundation, such

as dynamical systems and quantum chaos), we choose to approach these topics in

a more intuitive and physical way, sacrificing by necessity rigor and completeness.

We first examine some commonly encountered physical processes and try to

bring out in each a different key concept in NEqSM. To have a concrete bearing

and a common ground, let us focus on just one such issue which is of paramount

importance and poses a constant challenge to theoretical physicists: How does

apparent irreversibility in the macroscopic world arise from the time-reversal

invariant laws of microphysics [Leb93, HaPeZu94, Mac92, Sch97]?

We begin with an analysis of the nature and origin of irreversibility in well-

known physical processes such as dispersion (referring in the specific context here

to the divergence of neighboring trajectories in configuration or phase space

due to dynamical instability), diffusion, dissipation and mixing. We will seek

the microdynamical basis of these processes and clarify the distinction between

processes whose irreversibility arises from the stipulation of special initial con-

ditions, and those arising from the system’s interaction with a coarse-grained

environment. It is beneficial to keep in mind these processes and the issues

they embody when we begin our study of quantum field processes so that they

will not be marred by the technical complexity of quantum field theory. We
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4 Basic issues in nonequilibrium statistical mechanics

can ask questions such as (1) “What is the entropy generation from particle

creation in an external field or a dynamical spacetime, as in cosmology?”; (2)

“How could an interacting field thermalize?”; (3) “Is there irreversibility asso-

ciated with quantum fluctuations in field theoretical processes like particle cre-

ation?” Or, more boldly, “Can the ‘birth of the Universe’ be viewed as a large

fluctuation?” “Might it not happen at all – a ‘still’ birth – due to the power-

ful dissipative effects of particle creation which suppresses the tunneling rate?”

(4) “Can one use thermodynamic relations to characterize certain quantum field

processes?”

These questions reveal how deeply one can probe into the NEqSM features of

quantum field theory and how quantum field processes can lend themselves to

statistical mechanical and thermodynamic depiction or characterization. Asking

question (1) reveals the differences resulting from many levels of coarse graining

between a quantum field understanding of particle creation processes (no

entropy production because the vacuum is a pure state) and a thermodynamic

description (yes, entropy is proportional to the number of particles produced).

Asking question (2) forces us to reckon with the intricate NEqSM features of an

interacting quantum field such as how a correlation entropy can be defined from

the Schwinger–Dyson hierarchy. These aspects are not usually discussed in quan-

tum field theory textbooks. The first part of question (3) brings out the often

used yet poorly understood aspects of noise – beginning with quantum noise

associated with vacuum fluctuations, properties of multiplicative colored noise,

and nonlocal dissipation and their effects on the dynamical processes. The second

part of question (3) is the so-called “back-reaction” effect of quantum fields on

a background field or background spacetime. Question (4) asks if this effect can

have a thermodynamic interpretation. To the degree that thermodynamics is the

long-wavelength, heavily coarse-grained limit of microphysics and quantum field

theory is a theory of microphysics, we certainly expect such relations to exist and

their discovery will reveal the relation between micro–macro and quantum-to-

classical transitions. A well-known relation is the black hole thermodynamics of

Bekenstein [Bek73] and the quantum Hawking radiation [Haw75]. Sciama [Sci79]

suggested that this can be understood from the viewpoint of quantum dissipative

systems. This view also applies to dissipation of anisotropy in the early universe

due to particle creation from the vacuum. We will find out later that both for

the black hole and the early universe these processes can indeed be understood

as manifestations of a fluctuation–dissipation relation, relating fluctuations

of quantum fields to dissipation in the dynamics of the background field or

spacetime.

1.1 Macroscopic description of physical processes

Let us begin by examining a few examples of irreversible processes to illustrate

their different natures and origins. Consider the following processes:
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1.1 Macroscopic description of physical processes 5

Dispersion

Diffusion

Dissipation

Relaxation

Mixing

Recurrence

Decoherence

Recoherence

They contain different aspects of irreversibility. The usage of these terms

appearing in general-purpose books could be rather loose or even confusing. For

example, diffusion, relaxation and dissipation are often seen used interchange-

ably. Even the same word could mean different things in different contexts. For

example, classical diffusion is often viewed as a form of dissipation, while quan-

tum diffusion refers to phase dispersion, usually occurs at a much faster time-

scale and is more closely related to decoherence than dissipation. We will discuss

quantum phenomena in Chapter 3. Here we will focus on the first six such pro-

cesses listed above and aim at providing some microdynamics basis to these

processes in order to give them a more precise meaning. In so doing we hope to

elucidate some basic notions and issues of NEqSM through examples.

We first highlight the distinction between dissipative processes (which are

always irreversible) and irreversible or “apparently” irreversible processes (which

are not necessarily dissipative). For example, in elastic scattering, neighboring

trajectories diverge exponentially fast. This is characteristic of mixing systems,

which are reversible. Relaxation and diffusion referring to dissipative systems

are irreversible. They are mixing systems with some type of coarse graining

introduced. As we shall see, not any type of coarse graining leads to irreversibil-

ity. Many factors enter, such as the large size of the system, the particular initial

conditions chosen, or the time-scales at work. This is where it calls for special

caution in doing the analysis. Better understanding of the chaotic behavior

in classical molecular dynamics has provided a firmer microscopic basis for

nonequilibrium statistical mechanics. Such studies for quantum systems are less

developed and for this reason we shall refrain from describing them. In Chapter

3 we shall have occasion to discuss quantum decoherence and dissipation where

the interplay of quantum and thermal fluctuations in the environment and their

effects on the system will be discussed. We shall also revisit these issues of

irreversibility and approach to equilibrium in Chapter 12.

A. Dispersion

Consider a system of dilute gas made up of interacting particles modeled as hard

spheres with diameter d. For simplicity, let us work in two dimensions with hard

disks. (Our illustration here follows [Gas98]; see also [Ma85] which contains excel-

lent conceptual discussions.) Assume the particles move with constant velocity v
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6 Basic issues in nonequilibrium statistical mechanics

and traverse a distance given by the mean free path ℓ ≫ d before colliding with

another particle elastically. The trajectory of any particle governed by the laws

of mechanics is of course reversible in time. However, upon just a few collisions

two neighboring trajectories will deviate from each other very rapidly if the scat-

tering surface is convex, as a sphere is. To see this, let’s set our stop watch time

zero (t = 0) right after the first collision (call this collision the n = 0 one) and

follow the particle’s trajectory for n subsequent collisions. Call the scattering

angle of the first collision θ(0) and the uncertainty associated with it δθ(0) and

likewise for the scattering angle after an additional n collisions θ(t) and its uncer-

tainty δθ(t). For each additional collision the uncertainty in the scattering angle

increases by a factor of ℓ/d deduced from the simple trigonometry of incident

and scattered trajectories. So after n collisions then

|δθ(t)| ∼ |δθ(0)|n ≡ |δθ(0)|eλt (1.1)

The second equivalence relation above defines the parameter λ, which is called

the Lyapunov exponent (actually its maximal value enters into this expression).

The time for n successive collisions is given by t = nτ where τ is the time

between collisions related to the mean free path ℓ by v = ℓ/τ . Thus the (maximal)

Lyapunov exponent is given by

λ ∼
1

τ
ln

ℓ

d
(1.2)

This simple way of estimating the maximum Lyapunov exponent first given by

Krylov [Kry44, Kry79] remains very useful in illustrating the elemental process

of divergence of neighboring trajectories due to dynamical instability, referred

to here as “dispersion” for short. For hard sphere collisions we see that after a

sufficiently long time |δθ(t)| ≈ 1, the exit direction becomes completely indeter-

minate due to the accumulated error.

The asymmetry in the initial and final conditions of the collection of

trajectories (congruence) comes from the accumulation and magnification of

the uncertainty in the initial conditions due to the collisions, even though

the dynamical law governing each trajectory is time-symmetric. To trace a

particular trajectory backwards in time after a large number of collisions

requires an exponentially high degree of precision in the specification of the

initial condition. This ultra-sensitivity of dynamics to initial conditions is

characteristic of chaotic systems. Note that the divergence of neighboring

trajectories in phase space or parameter space is an intrinsic property of

the nonlinear Hamiltonian of the system, not a result of coarse graining by

the truncation of the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY)

series and the causal factorizability of the two-particle correlation function as

in Boltzmann’s molecular chaos hypothesis. (Initially uncorrelated particles

become correlated after collisions, thus giving rise to time-asymmetry in the

dissipative dynamics of Boltzmann’s equation.) The evolution of an ensemble
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1.1 Macroscopic description of physical processes 7

of such systems at some finite time from the initial moment often appears to

be unrelated to their initial conditions, not because the individual systems are

insensitive to the initial conditions but because they are overly-sensitive to

them, thus making it difficult to provide an accurate prediction of each system’s

state in the future. It is in this sense that these systems manifest irreversibility.

In contrast, for an integrable system the trajectories stay close to each other

because the regions in phase space for its dynamics are limited by the constants

of motion. Such trajectories in integrable systems are referred to as “stable”

while those in chaotic systems are “unstable” as they become dispersive in the

sense defined above owing to their dynamical instability. We will return in a

later section to irreversibility and nonequilibrium thermodynamics considered

from the framework of Hamiltonian dynamics.

B. Diffusion

Let us look at some simple examples in kinetic theory: gas expansion, ice melt-

ing and an ink drop in water. These are irreversible processes because the ini-

tial states of 1023 molecules on one side of the chamber and a piece of ice

or ink drop immersed in a bath of water are highly improbable configurations

out of all possible arrangements. These initial conditions are states of very low

entropy. The only reason why they are special is because we arrange them to

be so. For these problems, we also know that the system–environment sepa-

ration and interaction make a difference in the outcome. In the case of an

expanding ideal gas, for example, for free expansion the change of entropy is

δSsystem > 0, δSenviron = 0, δStotal > 0. For isothermal quasistatic expansion:

δSsystem = −δSenviron > 0, δStotal = 0 instead (see, e.g. [Rei65]).

Another important factor in determining whether a process is irreversible

is the time-scale of observation compared to the dynamic time-scale of the

process. We are familiar with the irreversible process of an ink drop dispersing

in water which happens in a matter of seconds, but the same dye suspension

put in glycerine takes days to diffuse, and for a short duration after the initial

mixing (say, by cranking the column of glycerine with a vertical stripe of dye

one way) one can easily “unmix” them (by reversing the direction of cranking

[UMDdemo]). We will discuss in the next section under what conditions and in

what sense a “mixing” system, though time-reversible, can be viewed as capable

of approaching equilibrium. Diffusion, when used in the sense of dissipation, is

nevertheless an irreversible process.

C. Dissipation

There are two basic models of dissipation in nonequilibrium statistical mechanics:

the Boltzmann kinetic theory of dilute gas, and the Langevin theory of Brow-

nian motion. Each invokes a different set of concepts, and even their relation

is illustrative. In kinetic theory, the equations governing the n-particle distri-

bution functions (the BBGKY hierarchy) preserve the full information of an
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8 Basic issues in nonequilibrium statistical mechanics

n-particle system. It is (1) ignoring (more often restricted by the precision of

one’s observation than by choice) the information contained in the higher-order

correlations (truncation of the BBGKY hierarchy), and (2) the imposition of

causal factorization conditions, like the molecular chaos assumption, that brings

about dissipation and irreversibility in the dynamics of the lower-order correla-

tions [Zwa01, Bal75].

In the lowest order truncation of the BBGKY hierarchy valid for the descrip-

tion of dilute gases, the Liouvillian operator L acting on the one-particle distribu-

tion function f1(r1, p1, t) is driven by a collision integral involving a two-particle

distribution function f2(r1, p1, r2, p2, t) (cf. Chapters 2 and 11). Boltzmann’s

molecular chaos ansatz (MCA) assumes an initial uncorrelated state between

two particles: f2(1, 2) = f1(1)f1(2), i.e. that the probability of finding particle

1 at (r1, p1, t) and particle 2 at (r2, p2, t) at the same time t is equal to the

product of the single-particle probabilities (a factorizable condition). Note that

this condition is assumed to hold only initially, but not finally. A short-range

interaction in a collision process will almost certainly generate dynamical cor-

relations between the two collision partners. The truncated BBGKY hierarchy

(with MCA) is an example of what we call an effectively open system (see Sec-

tion 1.5 of this chapter). Boltzmann’s explanation of dissipation in macroscopic

dynamics is one of the crowning achievements of theoretical physics.

Dissipation in an open system described by the Langevin dynamics has

similarities with and differences from that of an effectively open system (as

exemplified by the Boltzmann system). The open system can be one distin-

guished oscillator, the Brownian particle (with mass M), interacting with

many oscillators (with mass m) serving as its environment (see Chapter 2).

Dissipation in the dynamics of the open system arises from ignoring details

of the environmental variables and only keeping their averaged effect on the

system (this also brings about a renormalization of the mass and the natural

frequency of the Brownian particle). Usually one assumes M ≫ m and weak

coupling between the system and the environment to simplify calculations.

The effect of the environment on a particular system can be summarized

by its spectral density function, but other environments can produce equiv-

alent effects. In both of these models, as well as in more general cases,

the following conditions are essential for the appearance of dissipation (see,

e.g. [Hu89]):

(a) System–environment separation. This split depends on what one is interested

in, which defines the system: it could be the slow variables, the low modes,

the low order correlations, the mean fields; or what one is restricted to: the

local domain, the late history, the low energy, the asymptotic region, outside

the event horizon, inside the particle horizon, etc.

(b) Coupling. The environment must have many degrees of freedom to share with

and spread the information from the system; its coupling with the system
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1.1 Macroscopic description of physical processes 9

must be effective in the transfer of information (e.g. nonadiabatic) and the

response of the coarse-grained environment must be sufficiently nonsystem-

atic in that it will only react to the system in an incoherent and retarded

way. (An example of almost the opposite condition is a dressed atom, i.e. an

atom in a high finesse electromagnetic cavity where the quantum coherence

of the system can be preserved to a high degree [CoPaPe95].)

(c) Coarse graining. One must ignore or down-grade the full information in the

environmental variables to see dissipation appearing in the dynamics of the

open system. (The time of observation enters also, in that it has to be greater

than the interaction time of the constituents but shorter than the recurrence

time in the environment.) Coarse graining can be the causal truncation of

a correlation hierarchy, the averaging of the higher modes, the “integrating

out” of the fluctuation fields, or the tracing of a density matrix (discarding

phase information).

(d) Initial conditions. Whereas a dissipative system is generally less sensitive to

the initial conditions in that for a wide range of initial states dissipation

can drive the system to the same final (equilibrium) state, the process is

nevertheless possible only if the initial state is off-equilibrium. The process

manifests irreversibility also because the initial time is singled out as a special

temporal reference point when the system is prepared in that particular

initial state. Thus in this weaker sense, dissipation is also a consequence of

specially prescribed initial conditions.1

While the dynamics of the combined system made up of a subsystem and its

environment is unitarity, and its entropy remains constant in time, when certain

coarse graining is introduced in the environment, the subsystem turns into an

open system, and the entropy of this open system (constructed from the reduced

density matrix by tracing out the environmental variables) increases in time. In

this open system dynamics, the effect of the coarse-grained environment on the

subsystem leads to dissipation and irreversibility in its dynamics.

In our prior discussion of dynamical instability or “dispersion” with the

example of hard-disk scattering we were introduced to irreversible but nondis-

sipative processes. Irreversibility there refers to the ultra-sensitivity of the

dynamics to the initial conditions. It is extremely difficult to trace back in

time a highly divergent congruence of trajectories. The source of irreversibility

1 Note the distinction between these cases: If one defines t0 as the time when a dissipative
dynamics begins and t1 as when it ends, then the dynamics from t0 to −t is exactly the
same as from t0 to t, i.e. the system variable at −t1 is the same as at t1. This is expected
because of the special role assigned to t0 in the dynamics with respect to which there is
time-reversal invariance, but it is not what is usually meant by irreversibility in a
dissipative dynamics. The arrow of time there is defined as the direction of increase of
entropy and irreversibility refers to the inequivalence of the results obtained by reversing
t0 and t1 (or, for that matter reversing t0 and −t1), but not between t1 and −t1. The
time-reversal invariance of the H-theorem has the same meaning.
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10 Basic issues in nonequilibrium statistical mechanics

there is by nature fundamentally different from that found in open systems

discussed here. The former dynamics is irreversible but nondissipative, while

the latter is both dissipative and irreversible. Both types of processes depend

on the stipulation of initial conditions. The difference is that the former

depends sensitively so, the latter less sensitively. Thus dissipative processes

must involve some measure of coarse graining, but coarse graining alone need

not lead to dissipation. We will have a subsection later on the issue of coarse

graining.

D. Phase mixing

Two well-known effects fall under this category: Landau damping and spin echo

(e.g. [Bal75, Ma85]). Let us examine the first example. If one considers long-

ranged forces such as the Coulomb force in a dilute plasma gas where close

encounters and collisions are rare, the factorizable condition can be assumed to

hold throughout, before and after each collision (thus there is no causal condition

like the molecular chaos assumption imposed). Under these conditions the Boltz-

mann kinetic equation becomes a Vlasov (or collisionless Boltzmann) equation

(see, e.g. [Bal75, Kre81]). This problem will be discussed in Chapters 10 and 11.

The dependence on the one-particle distribution function f1(r,p, t) makes the

Vlasov equation nonlinear, and it has to be solved in a self-consistent way. (This

aspect is analogous to the Hartree approximation in many-body theory.) Note

that the Vlasov equation which has a form depicting free streaming is time-

reversal invariant: the Vlasov term representing the effect of the averaged field

does not cause dissipation. This mean-field approximation in kinetic theory,

which yields a unitary evolution of reversible dynamics, is, however, only valid

for times short compared to the relaxation time of the system in its approach to

equilibrium. This relaxation time is associated with the collision-induced dissi-

pation process.

Landau damping in the collective local charge oscillations, being a solution

of the Vlasov equation, is intrinsically a reversible process. The appearance of

apparent “irreversibility” is a consequence of some specially stipulated initial

conditions. One may even be able to find a function which is monotonically

increasing and refer to it as representing entropy generation. However, upon

the choice of some other condition, this feature can disappear and the entropy

function can decrease. (An example in Chapter 4 is the entropy function defined

in the particle number basis.) Landau “damping” is a mixing process, illustrated

here by the Vlasov dynamics. It is fundamentally different from the dissipation

process, in that the latter has an intrinsic damping time-scale but not the former,

and that while dissipation depends only weakly on the initial conditions, mixing

is very sensitive to the initial conditions. Spin echo is another well-known example

of phase mixing [Bal75]. For quantum plasma, one needs to coarse grain the phase

information in the wavefunctions and consider special initial conditions to see

this apparent “damping” effect (more in Chapter 4).
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1.2 Microscopic characterization 11

From the array of examples above we see that irreversibility and dissipation

involve very different causes. The effect of interaction, the role of coarse graining,

the choice of time-scales, and the specification of initial conditions in any process

can give rise to very different results. We will expand on these physical conditions

later, after we have had a chance to look at the microscopic characterization of

these macroscopic processes, i.e. their molecular dynamics basis.

1.2 Microscopic characterization from dynamical systems behavior

From a sampling of these macroscopic processes we see a variety of physical

behavior. The underlying causes should all be traceable to the microscopic molec-

ular dynamics, to which we now turn our attention. Let us start with a decep-

tively simple question: An isolated mechanical system is time-reversible. Under

what conditions and in what sense does a large isolated system reach equilibrium?

1.2.1 Ergodicity describes a system in equilibrium

An isolated system of N molecules in a volume V has a constant total energy

E under the Hamiltonian H(r,p), where r,p each is a 3N-dimensional vector

denoting the position and momenta of all the particles in a 6N-dimensional phase

space Γ. The density function ρ(γ) is defined such that the probability of finding

a member γ of the ensemble in a differential volume dΓ ≡ dr1 · · · drNdp1 · · ·dpN

is equal to ρ(γ)dΓ. Its dynamics is described by the flow of each member of the

ensemble restricted to the constant energy surface or manifold E in Γ. Since the

number of members flowing in and out of a region in phase space should be equal

for all times we have ρ satisfying the Liouville equation,

dρ

dt
≡

∂ρ

∂t
+

N
∑

1

(

ṙi ·
∂

∂ri
+ ṗi ·

∂

∂pi

)

ρ = 0 (1.3)

where an overdot denotes derivative with respect to time.

In statistical mechanics the microcanonical ensemble describes such an iso-

lated system. The number of states is represented by the area of the energy

surface E in phase space:

Ω(E) =

∫

H=E

dμ ≡

∫

Γ

δ(H − E)dμ, (1.4)

where μ is the invariant measure on Γ. The entropy is defined as S = kB ln Ω(E).

The ensemble average of a phase space function F over the energy surface E is

given by

〈F 〉µ ≡

∫

H=E
dμF (γ)

∫

H=E
dμ

=

∫

Γ
F (γ)δ(H − E)dμ
∫

Γ
δ(H − E)dμ

(1.5)
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