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Preliminaries

1.1. Harmonic Mappings

A real-valued function u(x, y) is harmonic if it satisfies Laplace’s equation:

�u = ∂2u

∂x2
+ ∂2u

∂y2
= 0.

A one-to-one mapping u = u(x, y), v = v(x, y) from a region D in the xy-
plane to a region � in the uv-plane is a harmonic mapping if the two coordi-
nate functions are harmonic. It is convenient to use the complex notation
z = x + iy, w = u + iv and to write w = f (z) = u(z) + iv(z). Thus a
complex-valued harmonic function is a harmonic mapping of a domain D ⊂
C if and only if it is univalent (or one-to-one) in D, that is, if f (z1) �= f (z2)
for all points z1 and z2 in D with z1 �= z2. Here C denotes the complex plane.

It must be emphasized that in this book the term “harmonic mapping”
will always mean a univalent complex-valued harmonic function, except for
occasional discussion of higher-dimensional analogues. Some writers use the
term in a broader sense that does not require univalence.

A complex-valued function f = u + iv is analytic in a domain D ⊂ C if
it has a derivative f ′(z) at each point z ∈ D. The Cauchy–Riemann equations

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x

are an immediate consequence. Conversely, if f has continuous first partial
derivatives and the Cauchy–Riemann equations hold, then f is analytic in D.
(See Ahlfors [3] for information about analytic functions.) It follows from the
Cauchy–Riemann equations (and from the existence of higher derivatives) that
every analytic function is harmonic. A pair of functions (u, v) that satisfy the
Cauchy–Riemann equations is said to be a conjugate pair, and v is called
the harmonic conjugate of u. Hence, −u is the harmonic conjugate of v.
Strictly speaking, the conjugate function is determined locally only up to an
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2 Preliminaries

additive constant. In a multiply connected domain the conjugate function need
not be single-valued.

An analytic univalent function is called a conformal mapping because
it preserves angles between curves. In fact, this angle-preserving property
characterizes analytic functions among all functions with continuous first
partial derivatives and nonvanishing Jacobians, because it implies that the
Cauchy–Riemann equations are satisfied.

The object of this book is to study complex-valued harmonic univalent
functions whose real and imaginary parts are not necessarily conjugate. As
soon as analyticity is abandoned, serious obstacles arise. Analytic functions
are preserved under composition, but harmonic functions are not. A harmonic
function of an analytic function is harmonic, but an analytic function of a
harmonic function need not be harmonic. The analytic functions form an
algebra, but the harmonic functions do not. Even the square or the reciprocal
of a harmonic function need not be harmonic. The inverse of a harmonic
mapping need not be harmonic. The boundary behavior of harmonic mappings
may be much more complicated than that of conformal mappings. It will be
seen, nevertheless, that much of the classical theory of conformal mappings
can be carried over in some way to harmonic mappings.

The Jacobian of a function f = u + iv is

J f (z) =
∣∣∣∣ ux vx

uy vy

∣∣∣∣ = uxvy − uyvx ,

where the subscripts indicate partial derivatives. If f is analytic, its Jacobian
takes the form J f (z) = (ux )2 + (vx )2 = | f ′(z)|2. For analytic functions f , it
is a classical result that J f (z) �= 0 if and only if f is locally univalent at z.
Hans Lewy showed in 1936 that this remains true for harmonic mappings. A
relatively simple proof will be given in Chapter 2. In view of Lewy’s theorem,
harmonic mappings are either sense-preserving (or orientation-preserving)
with J f (z) > 0, or sense-reversing with J f (z) < 0 throughout the domain
D where f is univalent. If f is sense-preserving, then f is sense-reversing.
Conformal mappings are sense-preserving.

The simplest examples of harmonic mappings that need not be conformal
are the affine mappings f (z) = αz + γ + βz with |α| �= |β|. Affine mappings
with γ = 0 are linear mappings. It is important to observe that every com-
position of a harmonic mapping with an affine mapping is again a harmonic
mapping: if f is harmonic, then so is α f + γ + β f .

Another important example is the function f (z) = z + 1
2 z2, which maps

the open unit disk D onto the region inside a hypocycloid of three cusps in-
scribed in the circle |w| = 3

2 . To verify its univalence, suppose f (z1) = f (z2)
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1.2. Some Basic Facts 3

(a) n = 2 (b) n = 3

Figure 1.1. Image of mapping f (z) = z + 1
n zn

for some points z1 and z2 in D. Then

(z1 + z2) (z1 − z2) = 2 (z2 − z1).

But this is impossible unless z1 = z2, because |z1 + z2| < 2. The same argu-
ment shows that f (z) = z + 1

n zn is univalent for each n ≥ 2.
The image of the disk under the mapping f (z) = z + 1

n zn , as computed by
Mathematica, is displayed graphically in Figure 1.1 for the cases n = 2 and 3.
The curves in the figure are images of equally spaced concentric circles and ra-
dial segments. In general, the image of the disk under this mapping is bounded
by a hypocycloid of n + 1 cusps inscribed in the circle |w| = (n + 1)/n.

In studying harmonic mappings of simply connected domains in the plane,
there is no essential loss of generality in taking the unit disk as the domain
of definition. To be more precise, suppose that f is a harmonic mapping of
some simply connected domain � ⊂ C onto a domain �, with � �= C. The
Riemann mapping theorem ensures the existence of a conformal mapping ϕ

of D onto �. Thus the composition F = f ◦ ϕ is a harmonic mapping of D

onto �. The original mapping is f = F ◦ ψ , where ψ is the inverse of ϕ.

1.2. Some Basic Facts

Two simple differential operators appear commonly in complex analysis and
are very convenient. They are

∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂z
= 1

2

(
∂

∂x
+ i

∂

∂y

)
,
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4 Preliminaries

where z = x + iy. For a complex-valued function f (z), the equation
∂ f/∂z = 0 is just another way of writing the Cauchy–Riemann equations.
A direct calculation shows that the Laplacian of f is

� f = 4
∂2 f

∂z∂z
.

Thus for functions f with continuous second partial derivatives, is is clear
that f is harmonic if and only if ∂ f/∂z is analytic. If f is analytic, then
∂ f/∂z = f ′(z), the ordinary derivative.

The operators ∂/∂z and ∂/∂z are linear, and they have the usual properties
of differential operators. For instance, the product and quotient rules hold:

∂

∂z
( f g) = f

∂g

∂z
+ g

∂ f

∂z
,

∂

∂z

(
f

g

)
= g−2

(
g
∂ f

∂z
− f

∂g

∂z

)
,

and similarly for ∂/∂z. The special property(
∂ f

∂z

)−
= ∂ f

∂z

connects the two derivatives. The differential

d f = ∂ f

∂x
dx + ∂ f

∂y
dy

can be written as

d f = ∂ f

∂z
dz + ∂ f

∂z
dz,

thus motivating the notation ∂/∂z and ∂/∂z. The subscript notation fz =
∂ f/∂z and fz = ∂ f/∂z is often more convenient.

The chain rule for differentiation of composite functions can now be
derived (formally). Ifw = f (z) and z = g(ζ ), thenw = h(ζ ), where h = f ◦ g.
Writing

dz = ∂g

∂ζ
dζ + ∂g

∂ζ
dζ

and

dz = ∂g

∂ζ
dζ + ∂g

∂ζ
dζ = ∂g

∂ζ
dζ + ∂g

∂ζ
dζ ,
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1.2. Some Basic Facts 5

one finds after substitution that

dh = ∂ f

∂z

(
∂g

∂ζ
dζ + ∂g

∂ζ
dζ

)
+ ∂ f

∂z

(
∂g

∂ζ
dζ + ∂g

∂ζ
dζ

)
.

Thus,

∂h

∂ζ
= ∂ f

∂z

∂g

∂ζ
+ ∂ f

∂z

∂g

∂ζ
and

∂h

∂ζ
= ∂ f

∂z

∂g

∂ζ
+ ∂ f

∂z

∂g

∂ζ
.

The Jacobian of a function f = u + iv can be expressed as

J f = | fz|2 − | fz|2.
Consequently, f is locally univalent and sense-preserving wherever | fz(z)| >

| fz(z)|, and sense-reversing where | fz(z)| < | fz(z)|. Note that fz(z) �= 0 wher-
ever J f (z) > 0. For sense-preserving mappings w = f (z) one sees that

(| fz| − | fz|)|dz| ≤ |dw| ≤ (| fz| + | fz|)|dz|.
These sharp inequalities have the geometric interpretation that f maps an
infinitesimal circle onto an infinitesimal ellipse with

D f = | fz| + | fz|
| fz| − | fz|

as the ratio of the major and minor axes. The quantity D f = D f (z) is called the
dilatation of f at the point z. Clearly, 1 ≤ D f (z) < ∞. A sense-preserving
homeomorphism f is said to be quasiconformal, or K-quasiconformal, if
Df (z) ≤ K throughout the given region, where K is a constant and 1 ≤ K< ∞.
The 1-quasiconformal mappings are simply the conformal mappings.

It is often more convenient to consider the ratio µ f = fz/ fz , called the
complex dilatation of f . Thus, 0 ≤ |µ f (z)| < 1 if f is sense-preserving. It
may be observed that D f (z) ≤ K if and only if |µ f (z)| ≤ (K − 1)/(K + 1).
It follows that a sense-preserving homeomorphism is quasiconformal if and
only if its complex dilatation µ f is bounded away from 1 in the given region:
|µ f (z)| ≤ k < 1. The mapping f is conformal if and only if µ f = 0. For the
general theory of quasiconformal mappings the books by Lehto and Virtanen
[1] and Ahlfors [1] are recommended.

In the theory of harmonic mappings, the quantity ν f = fz/ fz , known as the
second complex dilatation, turns out to be more relevant than the first complex
dilatation µ f . Since |ν f | = |µ f |, it is again clear that f is quasiconformal if
and only if |ν f (z)| ≤ k < 1.

Now let f be a complex-valued function defined in a domain D ⊂ C having
continuous second partial derivatives. Suppose that f is locally univalent

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-64121-0 - Harmonic Mappings in the Plane
Peter Duren
Excerpt
More information

http://www.cambridge.org/9780521641210
http://www.cambridge.org
http://www.cambridge.org


6 Preliminaries

in D, with Jacobian J f (z) > 0. Let ω = ν f = fz/ fz be its second complex
dilatation; then |ω(z)| < 1 in D. Differentiating the equation fz = ω fz with
respect to z, one finds

fzz = fzzω + fzωz.

Now if f is harmonic in D, then fzz = 1
4� f = 0 there. Thus it follows that

ωz = 0 in D, so that ω is analytic. Conversely, if ω is analytic, then fzz = fzzω.
But since |ω(z)| < 1, this implies that fzz = 0, and f is harmonic. Thus, f
is harmonic if and only if ω is analytic. In particular, the second complex
dilatation ω of a sense-preserving harmonic mapping f is always an analytic
function of modulus less than one. This function ω will be called the analytic
dilatation of f , or simply the dilatation when the context allows no confusion.
Note that ω(z) ≡ 0 if and only if f is analytic.

The analytic dilatation has some nice properties. For instance, if f is
a sense-preserving harmonic mapping with analytic dilatation ω and it is
followed by an affine mapping A(w) = αw + γ + βw with |β| < |α|, then
the composition F = A ◦ f is a sense-preserving harmonic mapping with
analytic dilatation

Fz

Fz
= αω + β

βω + α
.

For a proof, use the chain rule to calculate

Fz = Aw fz + Aw fz = α fz + β fz,

Fz = Aw fz + Aw fz = α fz + β fz.

Thus,

Fz

Fz
= α fz + β fz

β fz + α fz
= αω + β

βω + α
.

The analytic dilatation also behaves well under precomposition. Let f be a
sense-preserving harmonic mapping of a simply connected domain D onto a
region �, with analytic dilatation ω. Let ψ map a domain � conformally onto
D. Then the composition F = f ◦ ψ maps � harmonically onto � and has
analytic dilatation ω ◦ ψ . To see this, simply use the chain rule to calculate
Fζ = fzψ

′ and Fζ = fzψ ′. Thus, the analytic dilatation of F is

Fζ (ζ )

Fζ (ζ )
= fz(ψ(ζ ))

fz(ψ(ζ ))
= ω(ψ(ζ )).

In a similar way, the first complex dilatation µ = fz/ fz shows a true invari-
ance property. If f is followed by a conformal mapping ϕ and F = ϕ ◦ f , then
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1.3. The Argument Principle 7

F has the same complex dilatation µ. Indeed, the chain rule gives Fz = ϕ′ fz

and Fz = ϕ′ fz , so that Fz/Fz = fz/ fz .
In a simply connected domain D ⊂ C, a complex-valued harmonic func-

tion f has the representation f = h + g, where h and g are analytic in D;
this representation is unique up to an additive constant. For a proof, recall
that fz is analytic if f is harmonic, and let h′ = fz , where h is analytic in D.
Now let g = f − h and observe that

gz = fz − hz = 0 in D

by the definition of h. Thus, g is analytic in D. The uniqueness of the repre-
sentation depends on the fact that a function both analytic and anti-analytic
must be constant. (An anti-analytic function is defined as the conjugate
of an analytic function.) If f is real-valued, the representation reduces to
f = h + h = Re{2h}, where 2h is the analytic completion of f , unique up
to an additive imaginary constant. In a multiply connected domain, the repre-
sentation f = h + g is valid locally but may not have a single-valued global
extension.

For a harmonic mapping f of the unit disk D, it is convenient to choose
the additive constant so that g(0) = 0. The representation f = h + g is then
unique and is called the canonical representation of f .

1.3. The Argument Principle

First recall the classical argument principle for analytic functions and its
elegant proof. Let D be a domain bounded by a rectifiable Jordan curve C ,
oriented in the positive or “counterclockwise” direction. Let f be analytic in
D and continuous in D, with f (z) �= 0 on C . The index or winding number
of the image curve f (C) about the origin is I = (1/2π )�C arg f (z), the total
change in the argument of f (z) as z runs once around C , divided by 2π . Let
N be the total number of zeros of f in D, counted according to multiplicity.
The argument principle asserts that N = I .

The customary proof begins with the observation that f ′/ f has a simple
pole with residue n wherever f has a zero of order n, so the residue theorem
gives

N = 1

2π i

∫
C

f ′(z)

f (z)
dz = 1

2π i
�C log f (z) = I.

(Actually, since the derivative f ′(z) need not be defined on C , the curve of in-
tegration should be slightly contracted.) As an application, it can be seen that if
f is analytic in D and continuous in D, and if it carries C in a sense-preserving
manner onto a Jordan curve � bounding a domain �, then f maps D
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8 Preliminaries

univalently onto �. In other words, univalence on the boundary implies uni-
valence in the interior.

Because the argument principle has so many important applications, it will
be very useful to have a generalization to complex-valued harmonic functions.
In fact, the theorem is essentially of topological nature and may be generalized
in various ways to arbitrary continuous mappings. However, it is desirable
both to avoid the complications of topological degree theory and to develop a
precise extension of the argument principle to “sense-preserving” harmonic
functions. The proof for analytic functions suggests that the structure of har-
monic functions may allow an elementary approach to a more general form
of the theorem, and this turns out to be the case.

A complex-valued harmonic function f , not identically constant, will be
classified as sense-preserving in a domain D if it satisfies a Beltrami equation
of the second kind, fz = ω fz , where ω is an analytic function in D with
|w(z)| < 1. Since the Jacobian is J f = | fz|2 − | fz|2, this implies in particular
that J f (z) > 0 wherever fz(z) �= 0. If f (z0) = 0 at some point z0 in D, the
order of the zero can be defined in terms of the canonical decomposition
f = h + g. Write the power-series expansions of h and g as

h(z) = a0 +
∞∑

k=n

ak(z − z0)k, g(z) = b0 +
∞∑

k=m

bk(z − z0)k,

where n ≥ 1, m ≥ 1, and an �= 0, bm �= 0. (Here it is tacitly assumed that f is
not analytic.) Actually, b0 = −a0 because f (z0) = 0. The sense-preserving
property of f takes the equivalent form g′ = ωh′, with |ω(z)| < 1. From this
it follows that m > n, or that m = n and |bn| < |an|. In either case, we will
say that f has a zero of order n at z0.

As an immediate consequence of the structural formula, it can be inferred
that the zeros of a sense-preserving harmonic function are isolated. Indeed,
if f (z0) = 0, then for 0 < |z − z0| < δ it is possible to write

f (z) = h(z) + g(z) = an(z − z0)n{1 + ψ(z)},
where

ψ(z) = (bm/an)(z − z0)m(z − z0)−n + · · · .

But it is clear that |ψ(z)| < 1 for z sufficiently close to z0, since m ≥ n and
|bn/an| < 1 if m = n. Hence f (z) �= 0 elsewhere near z0, and the zeros of f
are isolated. Observe that the sense-preserving hypothesis is essential, because
the zeros of a harmonic function are not always isolated. For example, the
function f (z) = z + z = 2x vanishes at every point on the imaginary axis.
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1.3. The Argument Principle 9

The argument principle for harmonic functions can now be formulated as
a direct generalization of the classical result for analytic functions.

Theorem. Let f be a sense-preserving harmonic function in a Jordan domain
D with boundary C. Suppose f is continuous in D and f (z) �= 0 on C. Then
�c arg f (z) = 2π N, where N is the total number of zeros of f in D, counted
according to multiplicity.

Proof. Suppose first that f has no zeros in D, so that N = 0 and the origin lies
outside f (D ∪ C). A fact from topology says that in this case �c arg f (z) = 0,
which proves the theorem. To prove the topological fact, let φ be a homeo-
morphism of the closed unit square S onto D ∪ C with φ : ∂S → C a home-
omorphism. Then the composition F = f ◦ φ is a continuous mapping of S
onto the plane with no zeros, and we want to prove that �∂S arg F(z) = 0.
Begin by subdividing S into finitely many small squares Sj on each of which
the argument of F(z) varies by at most π/2. Then �∂Sj arg F(z) = 0 and so

�∂S arg F(z) =
∑

j

�∂Sj arg F(z) = 0,

where the first equality relies on the cancellation of contributions from the
∂Sj except on ∂S.

Next suppose that f does have zeros in D. Because the zeros are isolated
and f does not vanish on C , there are only a finite number of distinct zeros in
D. Denote them by z j for j = 1, 2, . . . , ν. Let γ j be a circle of radius δ > 0
centered at z j , where δ is chosen so small that the circles γ j all lie in D and do
not meet each other. Join each circle γ j to C by a Jordan arc λ j in D. Consider
the closed path � formed by moving around C in the positive direction while
making a detour along each λ j to γ j , running once around this circle in the
negative (clockwise) direction, then returning along λ j to C . This curve �

contains no zeros of f , and so �� arg f (z) = 0 by the case just considered.
But the contributions of the arcs λ j along � cancel out, so that

�C arg f (z) =
ν∑

j=1

�γ j arg f (z),

where each of the circles γ j is now traversed in the positive direction. This
formula reduces the global problem to a local one. (The same reduction is
often used to prove the residue theorem.)

Suppose now that f has a zero of order n at a point z0. Then, as observed
earlier, f has the local form

f (z) = an(z − z0)n{1 + ψ(z)}, an �= 0,
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10 Preliminaries

where |ψ(z)| < 1 on a sufficiently small circle γ defined by |z − z0| = δ.
This shows that

�γ arg f (z) = n�γ arg {z − z0} + �γ arg {1 + ψ(z)} = 2πn.

Therefore, if f has zeros of order n j at the points z j , the conclusion is that

�C arg f (z) =
ν∑

j=1

�γ j arg f (z) = 2π

ν∑
j=1

n j = 2π N ,

which proves the theorem. The result admits an obvious extension to multiply
connected domains, just as for analytic functions. �

Several corollaries are worthy of note. First of all, there is a direct extension
of Rouché’s theorem to sense-preserving harmonic functions. Specifically, if
p and p + q are sense-preserving harmonic functions in D, continuous in D,
and |q(z)| < |p(z)| on C , then p and p + q have the same number of zeros
inside D. As in the standard proof for analytic functions, the inequality on
C implies that neither p nor p + q has a zero on C and that the images of
C under the two functions have the same winding numbers about the origin.
Thus the harmonic version of Rouché’s theorem follows from the harmonic
version of the argument principle.

Next there is a generalization of Hurwitz’s theorem. If fn are harmonic
functions in a domain D that converge locally uniformly, then their limit
function f is harmonic. The harmonic version of Hurwitz’s theorem asserts
that if f and all of the fn are sense-preserving, then a point z0 in D is a zero of
f if and only if it is a cluster point of zeros of the functions fn . More precisely,
f has a zero of order m at z0 if and only if each small neighborhood of z0

(small enough to contain no other zeros of f ) contains precisely m zeros,
counted according to multiplicity, of fn for every n sufficiently large. The
proof applies Rouché’s theorem exactly as in the analytic case, with p = f
and q = fn − f .

Finally, sense-preserving harmonic functions have the open mapping prop-
erty: they carry open sets to open sets. In fact, as in the analytic case, a stronger
statement can be made. If f is a sense-preserving harmonic function near a
point z0 where f (z0) = w0, and if f (z) − w0 has a zero of order n(n ≥ 1)
at z0, then to each sufficiently small ε > 0 there corresponds a δ > 0 with
the following property. For each point α ∈ Nδ(w0) = {w : |w − w0| < δ}, the
function f (z) − α has exactly n zeros, counted according to multiplicity, in
Nε(z0). The proof appeals to the harmonic version of Rouché’s theorem with
p = f − w0 and q = w0 − α.
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