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GALOIS THEORY OF SEMILINEAR TRANSFORMATIONS*
By
Shreeram S. Abhyankar
Mathematics Department, Purdue University, West Lafayette, IN 47907, USA;
e-mail: ram@cs.purdue.edu

Abstract. The general linear groups GL(m, g) can be realized as Galois
groups of certain vectorial (= g-additive) polynomials over rational function
fields when the ground field contains GF(gq), where m > 0 is any integer and
g > 1 is any power of any prime p. When calculated over the prime field as
the ground field, these Galois groups get enlarged into the semilinear groups
I'L(m, q). Similarly, for any integer n > 0, the Galois groups of the n-th it-
erates of these vectorials get enlarged from GL(m, ¢,n) to 'L(m, ¢, n) where
GL(m, ¢, n) is the general linear group of the free module of rank m over the
local ring GF(q)[T]/T™ and I'L(m, g, n) is its semilinearization. Likewise, a
corresponding enlargement to the semilinear symplectic groups I'Sp(2m, q)
happens when dealing with suitable vectorials having the symplectic simil-
itude groups GSp(2m, q) as Galois groups. Much of this continues to hold
when, instead of over rational function fields, the vectorials are considered
over meromorphic function fields. A similar semilinear enlargement takes
place when dealing with Galois groups between SL(m,q) and GL(m,q) or
between Sp(2m, ¢) and GSp(2m, ¢). The calculation of these various Galois
groups leads to a determination of the algebraic closures of the ground fields
in the splitting fields of the corresponding vectorial polynomials.

Section 1: Introduction
Throughout this paper, let k£, C K C Q be fields of characteristic p > 0
where  is an algebraic closure of K, let ¢ = p* > 1 be any power of p, let
m > 0 be any integer, and to abbreviate frequently occurring expressions,
for every integer i > —1, let us put

(i =14q+¢*+ ---+¢" (convention: (0) =1 and (—1) = 0).
Moreover, for any nonconstant ¢ = ¢(Y) € K[Y] we let
SF(#, K) = the splitting field of ¢ over K in Q

and
AC(kp, ¢, K) = the algebraic closure of k, in SF(¢, K).

For various classes of separable ¢, we shall determine the group Gal(¢, K)
and the field AC(kp, ¢, K). Here K will mostly be a rational function field
over k, or a formal meromorphic series field over k,. Also ¢ will mostly be
a projective or subvectorial or vectorial polynomial over K.
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2 ABHYANKAR: Galois theory of semilinear transformations

Recall that f*(Y) (resp: ¢*(Y) or ¢*(Y)) in K[Y] is said to be a pro-
Jjective (resp: subvectorial or vectorial) ¢g-polynomial of ¢g-prodegree
(resp: g-subdegree or ¢g-degree) m* (where m* > 0 is an integer) in Y
with coeficients in K if it is of the form f*(Y) = Yo, a; V™" =1=9) (resp:
(V) = Ty aye”

-1 or ¢*(Y) =TT, alYe™ ) with a} € K for
all 7 and aj # 0. The phrase “of g-prodegree (resp: ¢g-subdegree or ¢g-degree)
m* in Y with coefficients in K” may be dropped or may be abbreviated to
something like “in Y over K.” Also the reference to ¢ may be dropped.
Note that f*(Y) (resp: ¢*(Y) or ¢*(Y)) is monic < aj = 1, and note
that f*(Y) (resp: ¢*(Y) or ¢*(Y)) is separable (i.e., its Y-discriminant is
nonzero) < ay,. # 0, and note that ¢} (Y) = ¢} (0) = a},. where ¢} (Y)
is the Y-derivative of ¢*(Y). Also note that f*(Y) — ¢*(Y) = f*(Y? 1)
and ¢*(Y) — ¢*(Y) = Y¢*(Y) give bijections of projectives to subvecto-
rials (= their subvectorial associates) to vectorials (= their vectorial
associates).

To review what was said in Lemmas (2.4) and (2.5) of [A03] and Lemma
(4.1.1) of [A08], for a moment let f = f(Y) be a separable projective
g-polynomial of g-prodegree m over K, let ¢ = ¢(Y) = f(Y? ') and ¢ =
#(Y) =Y ¢(Y), and let V be the set of all roots of ¢ in 2, and note that then
V is an m-dimensional GF(q)-vector-subspace of 2; to see this, it suffices to
observe that the cardinality of V is ¢™ and for all y,z in © and { € GF(g)
we have ¢(y + 2) = ¢(y) + ¢(2) and ¢(Cz) = (¢(z). Let V be the set of all
roots of £ in . Then V' \ {0} is the set of all roots of ¢ in Q, and y > y?~}
gives a surjective map V'\ {0} — V whose fibers are punctured 1-spaces, i.e.,
1-spaces minus the zero vector. So we may identify V with the projective
space associated with V. In particular, fixing 0 # y € V and letting y’
vary over all elements of V with y/9~1 = y?~1 we see that y'/y € K(V)
varies over all nonzero elements of GF(q), and hence GF(¢q) C K(V) =
SF(¢,K) = SF(¢,K). It follows that any g € Gal(K(V), K) induces an
automorphism ¢’ of GF(g), and for all z € V and ¢ € GF(¢) we clearly have
9(¢z) = ¢'(¢)g(z); since g is clearly additive on V', we see that g induces
on V a semilinear transformation, i.e., an element of I'L(V) = T'L(m,q),
and moreover this element belongs to GL(V) = GL(m, q) < ¢’ is identity.
Thus in a natural manner Gal(¢, K) < T'L(m,q). Clearly ¢’ is identity for
all g € Gal(K(V), K) < GF(g) C K, and hence in the above identification
Gal(¢, K) < GL(m, q) & GF(q) C K. Thus we have the following:

Semilinearity Lemma (1.1). Let f = f(Y) be a separable projective g-
polynomial of q-prodegree m in'Y over K, let ¢ = ¢(Y) = f(Y9™1) and
¢ = ¢(Y) = YP(Y), and let V be the set of all roots of ¢ in Q. Then
V is an m-dimensional GF(q)-vector-subspace of Q with GF(q) C K(V) =
SF(¢,K) = SF(¢,K), and in a natural manner we may identify Gal(¢, K)
with a subgroup of TL(V) = T'L(m,q); under this identification we have
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ABHYANKAR: Galois theory of semilinear transformations 3

Gal(¢,K) < GL(m,q) & GF(q) C K. Likewise, we may identify Gal( f, K)
with a subgroup of PTL(m,q) and then Gal(f,K) becomes the image of
Gal(¢,K) under the canonical epimorphism of T'L(m,q) onto PT'L(m,q).
The Galois group Gal(¢,K) essentially equals the Galois group Gal(¢,K)
except that the former acts on nonzero vectors while the latter acts on the
entire vector space V.

This lemma will be used tacitly. In particular, the said Galois groups will
be regarded as subgroups of I'L(V) = T'L(m, ¢) and its projectivization. In
Section 2 we shall deal with vectorials whose Galois groups are between
SL(m, q) and T'L(m,q); this will be based on [A08]. In Section 3 we shall
deal with iterates of some of the vectorials considered in Section 2; this will
be based on [AS1]. In Section 4 we shall deal with vectorials whose Galois
groups are between Sp(2m, q) and I'Sp(2m, ¢); this will be based on [A04],
[AL1] and [AL2]. For relevant general discussion about Galois Theory, see
[A01], [A02] and [AQ7]. As a supplement to (1.1), in (2.5)(iii) of [A03] we
proved the following:

Root Extraction Lemma (1.2). Given any monic subvectorial q-poly-
nomial ¢ = ¢(Y) of g-subdegree m in Y over K, there ezists A € SF(¢, K)
such that A9~1 = (=1){m=1)¢(0).

When GF(q) C K, the Galois groups of the vectorials over K to be
considered in Section 2 will be between SL(m,q) and GL(m,¢). Note
that SL(m, q) < GL(m,q) with GL(m, q)/SL(m,q) = Z,_1 and hence for
every divisor d of ¢ — 1 there is a unique group GL(#(m,q) such that
SL(m,q) < GL®(m,q) < GL(m,q) and [GL(m,q) : GL®(m,q)] = d
where, as usual, < and < denote subgroup and normal subgroup respec-
tively, Z,—1 denotes a cyclic group of order ¢ — 1, and : denotes index.
Upon letting PGL(9)(m, q) to be the image of GL(*)(m, ¢) under the canon-
ical epimorphism of GL(m, ¢) onto PGL(m, q) we see that PGL(¥(m,q) is
the unique group between PSL(m, ¢) and PGL(m, ¢) such that [PGL(m, q) :
PGL(¥)(m, ¢)] = GCD(m, d).

Likewise GL(m, ¢)<I'L(m, ¢) with TL(m, ¢)/GL(m, ¢) = Z, and hence for
every divisor § of u there is a unique group I'Ls(m, q) such that GL(m, ¢) <
T'Ls(m,q) < TL(m,q) and [T'Ls(m,q) : GL(m, )] = 6, where PT'Ls(m, q) is
the image of T'Ls(m, ¢) under the canonical epimorphism of T'L(m, ¢) onto
PTL(m,q). Also we let TSLs(m, g) be the set of all subgroups I of I'Ls(m, q)
such that I N GL(m,q) = SL(m,q) <« I with I/SL(m,q) = Zs, and we let
PT'SLs(m, ) be the set of images of the various members of I'SLs(m, q)
under the canonical epimorphism of T'L(m, ¢q) onto PI'L(m, ¢); in Remark
(4.4.1) of [A08] we have shown that I'SLs(m, ¢) is a nonempty complete set
of conjugate subgroups of I'L(m,q), and every I in I'SLs(m,q) is a split
extension of SL(m, ¢) (i.e., some subgroup of I is mapped isomorphically
onto I/SL(m,q) by the residue class map of I onto I/SL(m,q)) such that
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4 ABHYANKAR: Galois theory of semilinear transformations

I'Ls(m, q) is generated by GL(m, ¢) and I. Finally we let I‘Lgd)(m, q) be the
set of all subgroups J of T'Ls(m, ¢) such that JNGL(m,q) = GL(¥)(m,¢)aJ
with J/GL(¥)(m,q) = Zs and I < J for some I in I'SLs(m, ¢), and we let
PI‘Lgd)(m,q) be the set of images of the various members of I‘Lgd)(m,q)
under the canonical epimorphism of I'L(m, ¢) onto PI'L(m, ¢); in Remark

(4.4.1) of [A08] we have shown that I‘Lgd)(m,q) is a nonempty complete
set of conjugate subgroups of I'L(m,g), and every J in FLgd)(m,q) is a
split extension of GL(9)(m, q) such that T'Ls(m, ¢) is generated by GL(m, q)
and J; note that clearly I‘qu_l)(m,q) = I'SLs(m,q) and FL%I)(m,q) =
{I‘Lé(ma Q)}

To determine the Galois groups when GF(q) is not contained in K, we
note that SF(Y? - Y,K) = K(GF(g)) and we let 6(X) be the unique
divisor of u such that

(1.3)
Gal(Y? - Y,K) = Zsk) ie. equivalently [K(GF(q)): K]=6(K)

and we note that then (see Footnote 17 of [A08])
(1.4) K N GF(q) = GF(p*/?X)),

Concerning 6(K), the following lemma is easily proved; see Propositions

(4.2.3) to (4.2.5) of [A08].

Linear Enlargement Lemma (1.5). For any separable projective q-poly-
nomial f = f(Y) of g-prodegree m in'Y over K and its subvectorial associate
¢ =¢(Y) = f(YT1) we have the following.

(1.5.1) If Gal(¢, K(GF(q))) = SL(m, q), then Gal(¢, K) € T'SLsx)(m, q)
and Gal(f,K) € PT'SLsxy(m, q).

(1.5.2) If Gal(¢, K(GF(q))) = GL(m,q), then Gal($, K) =T Lsx)(m, q)
and Gal(f, K) = PT'Lsky(m, ).

(1.5.8) If Gal(¢, K(GF(q))) = GL¥(m,q) where d is a divisor of ¢ — 1,
and for some field K' between K and SF(¢,K) we have 6(K') = 6(K)
and Gal(¢,K'(GF(q))) = SL(m,q), then Gal(¢,K) € I‘Lg‘g{)(m,q) and

- d
Gal(f, K) € PTL{{},(m, q).
In determining AC(k,, ¢, K) we shall use the following obvious:

Algebraic Closure Lemma (1.6). Just in this lemma let k, C K C Q be
fields of any characteristic, which may or may not be zero, such that Q2 is an
algebraic closure of K. Let ¢ = ¢(Y) be a nonconstant separable polynomial
in'Y with coefficients in K, and let k* be an algebraic field extension of
k, in SF(¢,K) such that for every finite algebraic field extension k' of k*
in SF(¢,K) we have [K(k') : K(k*)] = [k : k*] and |Gal(¢, K(K'))| =
|Gal(¢, K (k*))|. Then AC(ky,¢,K) = k™.

As a matter of terminology, we recall that a (noetherian) local ring S’ is
said to dominate a local ring S if S is a subring of S’ and the maximal
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ABHYANKAR: Galois theory of semilinear transformations 5

ideal M (S) of S is contained in the maximal ideal M (S’) of S/, and we note
that then the residue field S/M(S) of S may be identified with a subfield
of the residue field S’/M(S’) of S’; if under this identification, S/M(S)
coincides with S’/M(S’) then S’ is said to be residually rational over S;
thus in" particular S’ is residually rational over a subfield means that the
subfield gets mapped isomorphically onto S’/M(S’) under the canonical
epimorphism S’ — S'/M(S’).

It is a pleasure to thank Paul Loomis and Ganesh Sundaram for stimu-
lating conversations concerning the material of this paper.

Section 2: Linear Groups
In this Section, to write down families of polynomials whose Galois groups
are between SL(m,gq) and TL(m,q), let Y, X,T1,T3,... be indeterminates
over k,. For every e > 0 let

Ke=ky(X,Th,...,T.)
and

K. =the quotient field of an (e + 1)-dimensional regular local
domain R, with k, C R, and M(R.) = (X,T1,...,Te)R.

and for every e > 1 and 0 # 7 € kp(T1) let
I{(eyT) = p(X, T, Tz, e ,Te)'

We shall apply the considerations of Section 1 by taking K = K, or K, or
K (e,r) with suitable e and 7.

First, for 0 < e < m — 1, consider the monic separable projective g-
polynomial

€
£t = ) =Y L x 4 Y Ty 6
i=1
of g-prodegree m in Y over K., and its subvectorial associate
€
C=er() = ) =y e X 4 Y Ty
i=1
and, for every divisor d of ¢ — 1, let fo @ and ¢Z(d) be obtained by substi-

tuting (—1){™=1 X4 for X in f* and ¢** respectively, i.e., let

£ = prldy) = y{m-1) 4 (_1)(m—1)Xd + ZTiy(i—l)

i=1
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6 ABHYANKAR: Galois theory of semilinear transformations
and

€ .
.9 = 1Y) =Y 4 (-n)im x4 STy e
i=1
Next, for 1 < e < m— 1 and every 0 # 7 € kp(T1) let f(*e*,r) and ¢’(“:,T) be
obtained by substituting 7 for T} in f;* and ¢}* respectively, i.e., let

f(e T) (e T)(Y) Y(m -1 +X+TY+ETY(’ -1
=2

and

Sy = (V) =Y T 4 Xy +§;TY" -t
and, for every divisor d of ¢ — 1, let f(* e( and d>*( ) be obtained by substi-
tuting (—1){™~1 X4 for X in f(?,r) and qi(e’T) respectlvely, ie., let

f(*e(ti)) f(*e(c:))( ) = Yim-1) +(_1)(m—1)Xd+TY+ZTiy(i—l)
1=2

and

¢?§d3> ¢E£(?)( )= Y g (1)l xd g rye-l 4 ZTZ.YQ-_I'
=2
Finally, for 1 < e < m —1 and every 0 # 7 € kp(T1) let £f,ry and 87, )

be obtained by substituting ((—1){™=174=1 X) for (X,T}) in f3* and ¢**
respectively, i.e., let

f(e'r) f(eT)(Y) Y(m 1)+( 1)(m l)Tq 1+XY+ZTY(Z Y

1=2

and

ey = Bleny(Y) =Y 74 (-1)ImNre=t 4 xye- 1+ZTW L
=2

Concerning these polynomials, by MRT (= the Method of Ramification The-
ory) and MTR (= the Method of Throwing Away Roots), supplemented by
Theorem I of [CaK] which we restate as Theorem (2.1*) below, in Theorems
(2.3.1) to (2.3.5) of [A08] we respectively proved parts (2.1.1) to (2.1.5) of
the following Theorem (2.1).
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ABHYANKAR: Galois theory of semilinear transformations 7

Theorem (2.1*) [Cameron-Kantor]. If m > 2 and H < GL(m,q) is
such that its image under the canonical epimorphism of GL(m,q) onto
PGL(m, q) is doubly transitive, then either SL(m,q) < H, or(¢,m) = (4,2)
with A7 ~ H < SL(4,2) = GL(4,2) ~ As (where ~ denotes isomorphism,
and A7 and Ag are the alternating groups on 7 and 8 letters respectively).

Theorem (2.1). For1 <e <m—1 we have the following.

(2.1.1) If GF(q) C kp, then for every element 0 # 7 € ky(T1) we have
Gal(¢, .y, K(e,r)) = SL(m, q).

(2.1.2) If GF(q) C kp, then for every element 0 # 7 € ky(T1) we have
Gal(¢; ;1) K(e,ry)) = GL(m, q).

(2.1.3) If GF(q) C kyp, then for every integer € > e we have Gal(¢%*, K¢) =
GL(m, q).

(2.1.4) If GF(q) C kp, then for every element 0 # 7 € kp(T1) and every
divisor d of ¢ — 1 we have Gal((ﬁ’('i,dr)), Kemn) = GIL9(m,q).

(2.1.5) If GF(q) C kp, then for every integer € > e and every divisor d
of g — 1 we have Ga1(¢:(d), K.) = GL(9(m,q).

By using the Algebraic Closure Lemma (1.6), we shall now deduce the
following consequences of the above Theorem.

Theorem (2.2). For1 <e <m—1 we have the following.
(2.2.1) For every element 0 # 7 € kp(T1) we have AC(kp, ¢(, ,y, K(e,r)) =

ko (GF(g)).
(2.2.2) For every element 0 # 7 € ky(T1) we have AC(ky, blery Keery) =

kp(GF(q)).

(2.2.3) If € > e is any integer such that R, is residually rational over ky,
then we have AC(ky, ¢3*, K¢) = kp(GF(q)).

(2.2.4) For every element 0 # 7 € kp(T1) and every divisor d of ¢ — 1,

we have AC(k,,,¢g§f3), K(e,r)) = kp(GF(g)).
(2.2.5) If € > e is any integer such that R, is residually rational over kp,
then for every divisor d of ¢ — 1 we have AC(k,,,(}S:(d),Ke) = kp(GF(q)).

To prove (2.2.1) or (2.2.2) or (2.24),let 1 <e <m—1and 0 # 7 € k(T1)
be given, and respectively let (¢, G) = (¢>E‘e’7), SL(m, q)) or (¢Z:’T), GL(m,q))
or (‘75;5,(17))’ GL(®(m, q)) where in the last case d is any divisor of ¢— 1. Upon
letting K = K(. ;) and k* = k,(GF(g)), by (1.1) we see that k* C SF(¢, K).
Now we have K(k*) = k*(X,7,Ts,...,T.) with 7 € k*(T1) and GF(q) C k*,
and given any finite algebraic field extension &’ of k* in SF(¢, K) we also
have K (k') = k'(X, 7, T, ..., T.) with r € k'(T}) and GF(g) C k', and hence
respectively by (2.1.1) or (2.1.2) or (2.1.4) we see that Gal(¢, K(k')) = G =
Gal(¢, K(k*)). For any finite algebraic field extension &’ of k* in SF(¢, K)
we clearly have [K (k') : K(k*)] = [k’ : k*]. Therefore by (1.6) we conclude
that AC(kp, ¢, K) = k*.
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8 ABHYANKAR: Galois theory of semilinear transformations

To prove (2.2.3) or (2.2.5), let 1 < r < m—1 and € > e be given,
and respectively let (¢, G) = (¢5*,GL(m, q)) or (¢:(d),GL(d)(m,q)) where
in the second case d is any divisor of ¢ — 1. Upon letting K = K, and
k* = kp,(GF(g)), by (1.1) we see that k* C SF(¢,K). Moreover, upon
letting R} to be the localization of the integral closure of R, in K(k*)
at a maximal ideal in it we see that R} is an (e + 1)-dimensional regular
local domain whose maximal ideal is generated by (X, T4, ..., T.) and whose
quotient field is K(k*), and we clearly have GF(¢) C K(k*), and given
any finite algebraic field extension k' of £* in SF(¢, K), upon letting R,
to be the localization of the integral closure of R? in K (k') at a maximal
ideal in it we see that R, is an (e + 1)-dimensional regular local domain
whose maximal ideal is generated by (X,T1,...,T¢) and whose quotient
field is K ('), and we clearly have GF(q) C K(k’), and hence respectively
by (2.1.3) or (2.1.5) we see that Gal(¢, K(k')) = G = Gal(¢, K(k*)). Now,
assuming R, to be residually rational over k,, we see that R} is the integral
closure of R, in K (k*), and R} is residually rational over £*, and given any
finite algebraic field extension k' of k* in SF(¢, K), we see that R. is the
integral closure of Rf in K(k’), and R, is residually rational over k', and
also [K (k') : K(k*)] = [k’ : k*]. Therefore again by (1.6) we conclude that
AC(kp,¢,K) = k*.

In Theorems (4.3.1) to (4.3.5) of [A08] we deduced the following conse-
quences of parts (2.1.1) to (2.1.5) of the above Theorem (2.1) together with
the Linear Enlargement Lemma (1.5).

Theorem (2.3). For 1 <e <m—1 we have the following.

(2.3.1) For every element 0 # 7 € kp(T1), upon letting 6 = 6(k,), we have
Gal(d)E‘e,T), K(e,r)) € TSLs(m, q) and Gal(f(*e’r),K(e’T)) € PI'SLs(m,q).

(2.3.2) For every element 0 # 7 € ky(T1), upon letting 6 = 6(kp), we
have Gal(d)z‘:ﬂ),]&’(e,,)) =TLs(m,q) and Gal(f("‘e":r),K(e,T)) = PI'Ls(m, q).

(2.3.3) For every integer € > e, upon letting 6 =
§(K.), we have Gal(¢2*,K.) =T'Ls(m,q) and Gal(f3*,K.) = PT'Ls(m, q).
[Note that if either R = kp[[X,Th,...,Te]] or Re = the localization of
kp[X,Ti,...,T.] at the mazimal ideal generated by (X, T1,...,Te) then R,
is residually rational over k, and we have 6(K.) = 6(kp).]

(2.3.4) For every element 0 # 7 € kp(T1) and every divisor d of ¢ —
1, upon letting 6 = 6(kp), we have Gal(¢ze(f?),fx’(e,7)) € I‘Lgd)(m,q) and
Gall ;%) Ke;ry) € PLLY (m, ).

(2.3.5) For every integer € > e and every divisor d of ¢ — 1, upon let-
ting § = 6(K.), we have Gall¢s'?, K.) € TLP(m, q) and Gal(f:V, K.) €
PrI{(m, q). [Note that if either R. = ky[[X, Ty, ..., Te]] or Re = the local-
ization of kp[X, T4, ..., Te) at the mazimal ideal generated by (X, Ty, ..., Te)
then R, is residually rational over k, and we have §(K.) = 6(kp).]
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Remark (2.4) [Local Surface Coverings].

(2.4.1). For m > 1 = e we get the trinomials f;* = Y{™-1) 4+ T\Y +
X and ¢3* = Y?" 4+ T\Y? + XY, giving local coverings above a normal
crossing of the branch locus in the local (X, T})-plane, dealt with in [A07]
and [A08]; this is particularly significant with Ry = kp[[X,T1]]; the above
Theorems (2.2.3), (2.2.5), (2.3.3) and (2.3.5) give generalizations for the
local (€ 4 1)-dimensional space; the following Theorems (2.4.3) and (2.4.5)
are special cases of this. For m > 1 = e and 7 = 1 we get the trinomials
fay =Y 4 XY 4+ (=1)m=Y and ¢, ;) = Y+ XY+ (-1)m-ly
giving unramified coverings of the affine line, and the trinomials f(*f:l) =
Y{m-1) 4 ¥ 4+ X and gb?f‘yl) =Y?" +Y?+ XY giving unramified coverings
of the once punctured affine line, dealt with in [A03] and [A08].

Remembering that now m > 0 is any integer, we conclude with the
following consequences of the above theorems:

(2.4.2). We have Gal(¢p}r_1, Km—1) = T'Ls(m,q) and Gal(f}7_ 1, Km-1) =

m—1)

PTLs(m,q) where 6=6(k,), and we have AC(kp, ¢5n_1, Km—-1) =kp(GF(q)).
(2.4.3). We have Gal(¢p}r_1, Km—-1) = T'Ls(m,q) and Gal(f}_ 1, Km-1) =
PT'Ls(m,q) where 6 = 6(Kpm—1), and moreover if Ry_1 s residually ratio-
nal over k, then we have AC(ky, ¢yy_1, Km—1) = kp(GF(q)). [Note that if
either Ryp—1 = kp[[X,T1, ..., Tn-1]] or Rm—1 = the localization of
kp[X,T1,...,Tn-1] at the mazimal ideal generated by (X,T1,...,Tm-1)
then R,,_1 is residually rational over k, and we have 6(Km_1) = 6(kp).]
(2.4.4). We have Gal(¢"\?,, Kpn_1) € TP (m, q) and Gal(f2Y), Kno1) €

PFLgd)(m,q) where d is any divisor of ¢ — 1 and 6 = 6(kp), and we have
AC(ky, 612y, K1) = kyp(GF(g)).

m—1

(2.4.5). We have Gal($2\?,, Km—1) € TL?(m, q) and Gal(f5¥), Km_1) €

m-=1>
PI’Lgd)(m, q) where d is any divisor of g—1 and § = 6(Km—1), and moreover
if Rm—1 is residually rational over ky, then we have AC(lcp,qS:,Ed_)l,Km_l) =
k,(GF(q)). [Note that if either Rm—1 = kp[[X,T1,...,Tm=1]] o7 Rpp_1 =
the localization of kp[X,Ti,...,Tm—1] at the mazimal ideal generated by
(X,T1,...,Tm-1) then Rp_1 is residually rational over k, and we have

§(Komor) = 6(ky).]

Namely, everything except the assertions about AC was noted as Theo-
rems (4.4.2) to (4.4.5) of [A08]. For m > 1, the assertions about AC are
special cases of Theorems (2.2.2) to (2.2.5) respectively. For m = 1, it is easy
to see that if GF(q) C k, then Gal(¢y*, Ko) = GL(1, q) = Gal(¢p*, Ko) and
Gal(¢2Y Ko) = GL@(1,q) = Gal(¢;?, Ko) for every divisor d of ¢ — 1,
and from this the assertions about AC follow as in the proofs of Theorems

(2.2.2) to (2.2.5).
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10 ABHYANKAR: Galois theory of semilinear transformations

Note (2.5) [From Local Surface Coverings to Affine Line Cov-
erings]. As hinted in (2.4.1), the family of projective polynomials f}* was
generalized from the m > 1 = e case with Ry = k,[[X,T1]] when it is
reduced to the trinomial fi* = y{m=1 L T\Y + X, giving a local cover-
ing above a normal crossing of the branch locus in the local (X, T})-plane,
dealt with in [A07] and [A08]. Likewise, the families of projective poly-
nomials f(*e*’f) and f(*e,r) were generalized from the m > 1 = ¢ = 7 case
when they are reduced to the trinomials f{; ;) = Yim=1 £ XY 4 (=1){m-1)
and f(*l*,l) =ym-1) L y4+ X , giving unramified coverings of the affine
line and the once punctured affine line respectively, dealt with in [A03] and
[A08]. Out of this, the m = 2 and ¢ = p case of f{1,1)» 1., the trinomial
Y1+? + XY + 1, corresponds to the t = 1 case of the family of trinomials
YP*tt 4 XY? + 1, where ¢ is a positive integer prime to p, giving unramified
coverings of the affine line, which was our starting point in [A01] and [A02].

Section 3: Iterated Linear Groups
In this Section, let

m .
(31) E=EY)=Y" +)_ X;Y" with X;€K and X, #0

i=1

be a monic separable vectorial g-polynomial of ¢-degree m in Y over K,
where the elements X7, ..., X,, need not be algebraically independent over
k. When we want to assume that the elements X, ..., X;, are algebraically
independent over k, and K = kp(X1,...,Xn), we may express this by
saying that we are in the generic case. In the general (= not necessarily
generic) case, let V' be the set of all roots of E in €2, and note that then V'
is an m-dimensional GF(q)-vector-subspace of Q. Let X;1,...,Xm 1 be a
GF(g)-basis of V. Then

(3.2) Y© +§:X,-Y"m-i = H Y-MXi1— = 2AnXm,1)
i=1 (A1, Am)EGF(g)™

and hence

(3.3) kp[X1,..., Xm] Ckp(GF(g))[X1,1,.-+y Xm 1]

and

(3.4) SF(E,K) = K(V) = K(GF(¢))(X1,1,.--,Xm,1)-

As noted in (1.1), we also have

(3.5) Gal(E, K (GF(q))) < GL(V) = GL(m, q)
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