With the recent advent of large, ground-based telescopes and space telescopes, it is now possible to study in detail stars outside our galaxy – in neighbouring galaxies in the so-called Local Group. The VIII Canary Islands Winter School of Astrophysics gathered leading experts from around the world to review this exciting new area of research – extragalactic stellar astrophysics. This volume presents eight specially written articles based on the meeting, reviewing how the study of stars in nearby galaxies can be used to understand stellar and galactic structure and evolution in general.

This book covers all aspects of extragalactic stellar astrophysics: stellar physics, stellar winds, stellar evolution, the use of photometric and spectroscopic techniques for studying extragalactic stars, stellar populations, chemical evolution, star formation histories and the calibration of the extragalactic distance scale.

This timely volume provides graduate students and researchers with an invaluable introduction to and reference on the new subject of extragalactic stellar astrophysics.

CAMBRIDGE CONTEMPORARY ASTROPHYSICS

Stellar Astrophysics for the Local Group

CAMBRIDGE CONTEMPORARY ASTROPHYSICS

Series editors José Franco, Steven M. Kahn, Andrew R. King and Barry F. Madore

 $Titles \ available \ in \ this \ series$

Gravitational Dynamics, edited by O. Lahav, E. Terlevich and R. J. Terlevich (ISBN 0 521 56327 5)

High-sensitivity Radio Astronomy, edited by N. Jackson and R. J. Davis (ISBN 0 521 57350 5)

Relativistic Astrophysics, edited by B. J. T. Jones and D. Marković (ISBN 0 521 62113 5)

Advances in Stellar Evolution, edited by R. T. Rood and A. Renzini (ISBN 0 521 59184 8)

Relativistic Gravitation and Gravitational Radiation, edited by J.-A. Marck and J.-P. Lasota (ISBN 0 521 59065 5)

Instrumentation for Large Telescopes, edited by J. M. Rodríguez Espinosa, A. Herrero and F. Sánchez (ISBN 0 521 58291 1)

> Stellar Astrophysics for the Local Group, edited by A. Aparicio, A. Herrero and F. Sánchez (ISBN 0 521 63255 2)

Stellar Astrophysics for the Local Group

VIII Canary Islands Winter School of Astrophysics

Edited by A. APARICIO Instituto de Astrofísica de Canarias

A. HERRERO Instituto de Astrofísica de Canarias F. SÁNCHEZ

Instituto de Astrofísica de Canarias

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521632553

© Cambridge University Press 1998

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 1998 First paperback edition 2011

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-63255-3 Hardback ISBN 978-0-521-17630-9 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Participants	х
Preface	xiii
Acknowledgements	XV

Fundamentals of Stellar Evolution Theory: Understanding the HRD C. Chiosi

Childsi				
Introduction				1
Basic stellar evolution	•			2
Physical causes of violent ignition, explosion, and collapse				11
Two basic ingredients: nuclear reactions and opacities				16
Stellar winds: observational and theoretical hints				18
Classical evolution of massive stars with mass loss				24
Convection: the major uncertainty				32
Passing from theory to observations				47
Globular clusters				51
Old open clusters				61
Young rich clusters of the LMC				62
The HRD of supergiants stars: open problems				63
Modelling AGB & Carbon stars: recent results				72
Cepheid stars: mass discrepancy and mixing				76
References				79

Observations of the Most Luminous Stars in Local Group Galaxies

P. Massey

Introduction	95
Introducing the unevolved luminous stars	98
Finding main-sequence luminous stars in the Local Group:	
methodology for a hard problem	108
Finding the evolved descendants of massive stars:	
LBVs, WRs, and RSGs	116
Secrets of star formation as revealed by luminous stars	124
Secrets of stellar evolution revealed by luminous stars	130
Summary: what to take away from all this	144
References	145

Quantitative Spectroscopy of the Brightest Blue Supergiant Stars in Galaxies

R.P. Kudritzki

Introduction	149
Atmospheres of luminous hot stars	158
	100
Methods of spectral diagnostics	111
The X-ray emission of O-stars	195
IR - diagnostics of blue supergiants with extreme mass-loss	201
The most massive stars in the Local Group	213
Stellar abundances in Local Group galaxies and beyond	214
The Wind Momentum - Luminosity Relationship and extragalactic distances	232

viii	Contents	
	Extragalactic stellar astronomy - a vision	$254 \\ 256 \\ 256$
Ca	libration of the Extragolactic Distance Scale	
	Madore & W.L. Freedman	
D.1	Introduction to the lectures	263
	Cepheids	$\frac{203}{264}$
	Brief summary of the observed properties of cepheid variables	266
	Simple physical considerations	$\frac{260}{267}$
	Observational considerations	271
	Advances driven by new technology	275
	CCDs and multiwavelength coverage	277
	Obtaining accurate cepheid distances	278
	Local Group galaxies	280
	Bevond the Local Group	283
	The Hubble constant	288
	The future	288
	Contrasting aspects of the PL and PLC	289
	A reddening-free formulation of the PL relation	291
	Comments on reddening determinations	295
	Comparisons with other distance indicators	299
	The key project	300
	Other ground-based work	303
	Helium core flash and the tip of the red giant branch	000
	as a primary distance indicator	305
	The ideal distance indicator	305
	Some history concerning the red giant branch	306
	Concerns and technical issues	309
	An overview of the theoretical underpinnings: core helium ignition	312
	Recent applications of the TRGB method	313
	The scorecard	315
	Discussion	318
	Implications of the Hipparcos observations of galactic Cepheids	319
	Comparison with V-band period-luminosity relations	319
	Multiwavelength period-luminosity relations	320
	Discussion	324
	Implications of a cepheid distance to the Fornax cluster	327
	NGC 1365 and the Fornax cluster	328
	HST observations	329
	Cepheids in NGC 1365	330
	The Hubble constant	331
	The Hubble constant at Fornax	333
	The nearby flow field	334
	Beyond Fornax: the Tully-Fisher relation	336
	Beyond Fornax: other relative distance determinations	338
	Beyond Fornax: type Ia supernovae	339
	Cosmological implications	340
	Conclusions	341
	References	343

Contents

Dwarf Galaxies	
G.S. Da Costa	· · · ·
	351
Prelude: results from standard stellar evolution	352
"Old" populations in the Magellanic Clouds	358
Local Group dE and dSph galaxies	363
Local Group dIrr galaxies	388
Dwarf galaxies beyond the Local Group	396
Summary	401
References	402
Resolved Stellar Populations of the Luminous Galaxies in the Local Group	è
M. Mateo	
Introduction	407
Photometric techniques	408
Star clusters in the Local Group	415
The old and intermediate-age populations in luminous LG galaxies \ldots .	423
"Young" field star populations in luminous LG galaxies	429
Variable star populations in LG galaxies	433
Beyond the Local Group	438
Epilogue	444
Appendix: stellar photometry examples using DoPHOT	445
References	452
Chemical Evolution of the ISM in Nearby Galaxies	
E.D. Skillman	
Introduction and purpose	457
Abundances from HII regions	459
Simple chemical evolution	468
Abundance patterns in dwarf galaxies	472
Abundance patterns in spiral galaxies	489
Self-consistent star formation histories	504
Summary	518
References	518
Populations of Massive Stars and the Interstellar Medium	
C. Leitherer	
Introduction	527
Regions of high-mass star formation	528
Massive stars in resolved populations	543
Evolutionary synthesis of unresolved high-mass populations	556
Release of mass and energy by massive stars	569
Massive stars and the dynamics of the ISM	585
References	598

> Andronova, A. Aparicio Juan, A. Becker, S.R. Bosch, G. Bremmes, T. Cairós Barreto, L.M. Castellani, M. Chiosi, C. Cole, A.A. Cordero Gracia, M. Da Costa. G. Dorado de Cáceres, M. Gallart Gallart, C. García Navas, J. Girardi, L. Gouliermis, D. Gummersbach, C.A. Hansen Ruiz, C. Herrero Davó, A. Hidalgo Gámez, A.M. Hurley-Keller, D.A. Johnson, K. Kohle, S. Kudritzki, R.P. Larsen, S. Leitherer, C. Lourenso Prieto, S. Madore, B. Marigo, P. Martínez Delgado, D. Massey, P. Mateo, M. Moitinho de Almeida, A. Möller, C. Monteverde Hernández, M.I. Musella, I. Pedraz Marcos, S. Portinari, L. Prins, S. Rekola, R. Rosenberg González, A. Roth, M.M.T. Royer, F. Royer, P. Santillán, A.J. Santolamazza, P. Skillman, E. Smartt, S.J.

Participants

Pulkovo Observatory (Russia) Instituto de Astrofísica de Canarias (Spain) Universitäts-Sternwarte München (Germany) Institute of Astronomy, Univ. Cambridge (UK) Astronomical Institute of Basel (Switzerland) Instituto de Astrofísica de Canarias (Spain) Osservatorio di Monteporzio (Italy) Universita di Padova (Italy) University of Wisconsin-Madison (USA) Universidad Complutense de Madrid (Spain) Mt. Stromlo & Siding Spring Obs. (Australia) LAEFF-INTA (Spain) Carnegie Observatories of Washington (USA) VILSPA (Spain) Instituto de Fisica- UFRGS (Brasil) National Observatory of Athens (Greece) Landessternwarte Heidelberg (Germany) Royal Greenwich Observatory (UK) Instituto de Astrofísica de Canarias (Spain) Astronomiska Observatoriet Uppsala (Sweden) University of Michigan (USA) J.I.L.A., University of Colorado (USA) Radioastron. Institut Univ. Bonn (Germany) Universitäts-Sternwarte München (Germany) Niels Bohr Institut (Denmark) Space Telescope Science Institute (USA) Instituto de Astrofísica de Canarias (Spain) Infrared Processing and Analysis Center, CalTech (USA) Universita di Padova (Italy) Instituto de Astrofísica de Canarias (Spain) Kitt Peak National Observatory (USA) University of Michigan (USA) Instituto de Astrofísica de Andalucía (Spain) Universitäts-Sternwarte Göttingen (Germany) Instituto de Astrofísica de Canarias (Spain) Osservatorio Astronomico di Capodimonte (Italy) Universidad Complutense de Madrid (Spain) Universita di Padova (Italy) University of Amsterdam (The Netherlands) Turola Observatory (Finland) Osservatorio Astronomico di Padova (Italy) Astrophysikalisches Institut Postdam (Germany) DASGAL- Observatoire de Paris-Meudon (France) Institut d'Astrophysique de Liège (Belgium) Universidad Nacional Autónoma de México (México) Osservatorio Astronomico di Capodimonte (Italy) University of Minesota (USA) The Queen's University of Belfast (UK)

Participants

Tantalio, R. Taresch, G. Thomas, D. van Loon, J. T. Vassiliadis, E. Vega Beltrán, J.C. Vilchez Medina, J.M. Villamariz Cid, M.R. Zurita Muñoz, A. Universita di Padova (Italy) Universitäts-Sternwarte München (Germany) Universitäts-Sternwarte München (Germany) ESO, Garching bei München (Germany) Instituto de Astrofísica de Canarias (Spain) Osservatorio Astronomico di Padova (Italy) Instituto de Astrofísica de Canarias (Spain) Instituto de Astrofísica de Canarias (Spain) Instituto de Astrofísica de Canarias (Spain) $\mathbf{x}\mathbf{i}$

Preface

The goal of the Canary Islands Winter School of Astrophysics, organized by the Instituto de Astrofísica de Canarias (IAC), is to bring together each year advanced graduate students, recent postdocs and interested scientists with a group of leading experts in a particular area of astrophysics. The one held in 1996 in La Laguna (Tenerife, Spain) was devoted to the stellar content of the Local Group and the application of its study to more distant galaxies.

The idea of using the Local Group as a typical case and as a first step towards understanding the more distant Universe has its origins in the possibility of arriving at a detailed knowledge of the properties of its constituent galaxies and their stars. We are still making progress in acquiring a detailed knowledge of the Local Group, but we realize that the unknowns far outweight the knowns, and this is precisely the reason why study of the Local Group is still, and will continue to be, useful. As the results from the Hubble Space Telescope are coming in, we are witnessing a rapid advance in terms of quantity of information. What only a few years ago was no more than vague, often erroneous, conjecture concerning the properties of the nearest galaxies is now becoming irrefutable evidence, which in its turn raises new questions on aspects that were previously beyond our grasp. This change currently under way has also been aided by large ground-based telescopes, such as the WHT on La Palma, and especially the Keck I and II telescopes on Hawaii, and will be reinforced by the new technological achivements represented by the new generation of 8-10 m telescopes (from the VLT to the 10 m GTC, and the LBT, Gemini, Subaru, HET, etc., in between), together with rapid advances in detector size and sensitivity.

This is therefore a fitting moment to review what we know and do not know about the Local Group, to recognize our present limitations and identify areas where we might begin to glimpse an answer.

Why stellar astrophysics? Stars are born from the gaseous medium of galaxies; they evolve in a manner which depends mainly on their mass and eventually they die, returning part of their constituent material to the gaseous medium from which they came; but this material now has a different composition and dynamics. This irreversible process is the main driver of the evolution of most galaxies. If we knew how many stars of each age and chemical composition a galaxy has (i.e., its star formation history), we could, by making use of what we know concerning the processes that affect stars, understand what the galaxy is really like and how it evolves. What we manage to unravel concerning the conditions and the way in which stars are formed, the details of their evolution and the processed material which they return to the interstellar medium, will drive our knowledge of galaxies.

One of the most important applications of extragalactic stellar observations is the measurement of distances in the Universe. The Cepheids provide one of the standard measuring rods that enable us to construct a cosmic distance scale. This standard distance candle has to be continuously reviewed and updated, and great efforts are dedicated to the refinement of this method. But progress continues, and new techniques appear that may complement the Cepheid method. The wind momentum-luminosity relation, whose fundamentals are explained in chapter 3, is one of them.

For a long time, many classical applications of observations of stars, such as studies of ages and populations, stellar evolution, abundances, detailed interaction with the surrounding medium, etc., were limited by the faintness of extragalactic stars. At the same time, it was known that galaxies different from the Milky Way offered different conditions for stellar formation and evolution so that including them in studies already

xiv

Preface

carried out on our Galaxy would permit a significant advance in our understanding of these fields. At present, the technological developments referred to above are overcoming many of these difficulties, and a new era of stellar astrophysics may soon open up for us.

This whole conjunction of positive aspects encouraged us to suggest the topic of this book and to work enthusiastically towards bringing about the meeting. Trying to find the best list of topics and the best people to teach and review them, we brought together eight specialists in various aspects of the problem, which range from stellar evolution to stellar population synthesis as applied to distant galaxies; from the physics of stellar atmospheres to the properties of galaxies and the interstellar medium and the extragalactic distance scale.

We have no doubt that all the effort involved has greatly benefited all the participants, and we would like to extend this experience to all who are interested through the publication of these proceedings.

> Artemio Herrero, Antonio Aparicio La Laguna, Tenerife Noviembre, 1997

Acknowledgements

It is a pleasure to acknowledge the participation of the eight lecturers in the School. Their skill in presenting the material in a clear and concise way, and the spirited discussions and presentations of the 48 students all contributed towards making the School a very enjoyable event. We are also indebted to Lourdes González, Nieves Villoslada and Campbell Warden for their work during the preparation and organization of the School.