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Introduction

Relativistic numerical hydrodynamics is currently a field of intense
interest. On the one hand, the development of next-generation laser
interferometric and cryogenic gravity wave detectors is opening a new win-
dow of astronomy, one which will peer into a world of multidimensional
rapidly varying matter and gravity fields such as occur in and around
neutron stars, black holes, supernovae, compact binary systems, dense
clusters, collapsing stars, the early universe, etc. At the same time, X-ray
and «y-ray observatories are providing (or will soon provide) a wealth of
data on the evolution of matter in and around X-ray and ~-ray emitting
compact objects such as accreting black holes and neutron stars. Such
systems can only be realistically analyzed by a detailed numerical study
of the spacetime and matter fields.

A quantitative understanding of these systems as well as a host of other
astrophysical phenomena such as stellar collapse leading to supernovae,
the evolution of massive stars, and the origin of y-ray bursts, the origin
and evolution of relativistic jets, all require multidimensional complex
relativistic numerical simulations in three spatial dimensions. Since an-
alytic and post-Newtonian methods are only applicable for systems of
special symmetry and/or relatively weak fields, numerical relativistic
hydrodynamics is the only viable method to model such highly dynamical
asymmetrical strong field systems.

The technology for observing such energetic astrophysical phenomena
has developed in concert with the development of high speed computing.
Hence, it is perhaps no accident that the requirement for next-generation
multi-dimensional relativistic hydrodynamics modeling is occurring at a
time when computers are just now approaching the speed and memory
capability needed to explore such systems. For these reasons, it is expected
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2 1 Introduction

that there will be much research in relativistic numerical hydrodynamics
calculations in the coming years, hence the need for a book reviewing the
development of the subject.

The textbooks from which most of us learn general relativity usu-
ally emphasize a number of analytic solutions of some special cases, like
that of an isotropic Schwarzschild or Friedmann metric. Indeed, one is
hard pressed to think of a problem in relativity which can still be ad-
dressed with paper and pencil. The remaining real-world applications in
astrophysics and cosmology cannot be seriously studied analytically, nor
can one ignore the hydrodynamic evolution of the matter fields. Such
systems must be studied numerically. Indeed, the solution of numerical
problems often requires one to abandon some or all aspects of Newtonian
or even post-Newtonian intuition. Our goal here will be to provide an
overview of the computational framework in which such calculations have
been done, along with illustrative applications to real physical systems.

This book does not, however, attempt to give a comprehensive overview
of how to do numerical relativistic hydrodynamics calculations. It is rather
a compilation of those projects with which one or both of the authors
have had some involvement. An attempt at a comprehensive overview of
a field in which there have been so many significant contributors would
be difficult. Hence, although we shall refer here to a number of other
works in the field, this text will for the most part only summarize the
contributions of the authors and collaborators. These are the works with
which we are most familiar. Nevertheless, in the process of reading this
text, it is hoped that the reader will gain some understanding of the
development of relativistic hydrodynamics which has occurred over the
past 30 years.

In what follows we will assume that the reader has some familiarity with
basic concepts in special and general relativity. We only provide enough
introductory material so that the relativistic field and matter equations
can be introduced in a context which is most easily applied to numerical
problems, and not in the way they might be introduced in an introductory
text in either relativity or hydrodynamics alone.

1.1 Notation and convention

As with any other intensely mathematical subject, a text on numerical
relativity should contain a concise summary of notation and convention
in one location. Hence, we begin with an overview of the notation and
conventions which we have attempted to maintain throughout the book.
By and large, these are the conventions widely adopted in the field, and
as such, comprise useful introductory material.
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1.2 General relativity 3

In what follows we use the usual convention of Greek indices to denote
components of four-dimensional spacetime (p = 0, 1,2, 3). When referring
to a specific coordinate system they will be identified according to normal
convention (e.g. u = t,z,y,2 for Cartesian coordinates). We use Latin

characters, 7, 7, k, . .. to denote spatial indices. Partial differentiation will
be denoted in both the explicit and abbreviated form, e.g.
0
i Oy.- (1.1)

Partial differentiation along the time coordinate will also frequently be
denoted by the familiar “dot” notation,

0A OA .

ot Ox
We will also make use of geometrized units, ¢ = G = 1. For convenience,
Table 1.1 gives conversions from cgs units to geometrized units for various
parameters in use in this text.

1.2 General relativity

A brief summary of general relativity is a necessary starting point
for introducing concepts and notation to be encountered in subsequent
chapters. General relativity derives from the principle of equivalence
which asserts that at every spacetime point we can choose a coordinate
system such that the laws of physics have the same form as they would in
the absence of a gravitational field. This principle has led to the Einstein
field equations which relate the curvature of spacetime to the distribution
of mass—energy,

G = 811, (1.3)

where T}, is the energy momentum (or stress energy) tensor.
The Einstein tensor Gy, can be written in terms of the Ricci tensor
R,,,, metric tensor g,,, and Ricci scalar R,

1
Gl“/ = R/“’ — EQHVR, (14)

where the Ricci tensor is a contraction of the Reimann tensor
R,uy = R/\,u/\l/’ (15)

and
R=g¢g"R,,. (1.6)
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1.2 General relativity 5

Here, the Riemann—Christoffel curvature tensor R7 ., is
R ey = 0%y — 0T e + 1700 — T I e, (1.7)

where the Christoffel symbols, I'*,,, relate directly to the metric tensor.
For the usual case of a coordinate system in which the basis vectors com-
mute we have,

1 Og 098,  O9uv
o = _goP Bu v YYp
| R 2g {é%c'f + Dk 90 } (1.8)

1.2.1 Metric tensor

From Egs. (1.4)—(1.8) we see that the geometry of spacetime is specified
once the metric g,, and its derivatives are given. The generalization from
special relativity to general relativity is then simply the generalization
from a Euclidean flat space metric tensor to a curved space metric. As in
special relativity, the infinitesimal proper interval between two events in
spacetime is denoted

ds? = g dr*dz”. (1.9)

Now however, g,, can no longer be described by a simple Minkowski
metric, but instead involves curvature. In this book we will consistently
use the Misner, Thorne and Wheeler [13] sign conventions whereby the
Einstein equation and the Riemann tensor have a positive sign as written
above and g, is space like, e.g. in flat space,

10 0 0
0 100

dit=mw=| 49 o 1 o (1.10)
0 00 1

1.2.2 Energy momentum tensor

The other side of the Einstein equation (1.3), and the part of most interest
for relativistic hydrodynamics, is of course the stress energy tensor, T}, .
In a frame of reference in which a perfect fluid is in motion with respect
to an observer, the energy momentum tensor is written most generally as

Ty = (p + pe + P)ULUy + Py, (1.11)

where p is the local baryon rest-mass energy density. p is related to the
baryon number density np
p = monp, (1.12)
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6 1 Introduction

where my is the baryon rest mass appropriate to the matter composition.
The quantity e contains all information about the net internal energy
per unit mass of the baryons. It can be less than zero, for example for a
nondegenerate gas of bound nuclei. The quantity P in Eq. (1.11) is the
pressure, and U, is the covariant four-velocity. In a reference frame that
is at rest and locally Lorentzian, the stress energy tensor for an isotropic
perfect fluid can be written in a familiar form,

p(l+€¢ 0 0 O
0 P 0 0

Tw=| o o P o (1.13)
0 0 0 P

However, this form is not particularly useful for hydrodynamic simulations
with nontrivial fluid motion. In what follows we will deal almost exclu-
sively with Eq. (1.11), correcting for imperfect fluids and other fields (e.g.
electromagnetic) where appropriate.

1.2.3 Covariant differentiation

Equations of motion in general relativity require the introduction of
covariant differentiation. We use the notation A4*,, or D, A* to denote
covariant differentiation of a contravariant vector A",

I
D, AF = A*, = % + TH A AN (1.14)

Similarly, the covariant derivative of a covariant vector is

— aAM
wy Hxv

A — T, Ay (1.15)
In what follows we will also introduce covariant differentiation in the
ADM three-space (cf. Section 1.3). This we denote:

. A, .
DAl = ng + I AR, (1.16)

where I™ j& now denotes connection coeflicients for the three-dimensional
ADM hypersurface [22].

; 1 4(0v;  Owk  Ovk
T, — = il J v J }
k=7 {83[:’“ + Ox7 ox!

<7il'7kmcmlj + 7™ ~ C"jk>, (1.17)

_l’_

b =
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1.2 General relativity 7

where the C*j enter when the basis vectors of the three-space (denoted e;)
do not commute, [e;, e;] = exC¥;; # 0. For most applications, the simpli-
fications embodied in commuting coordinates are desirable so that we can
take Ckij = 0 and the three-space connection coefficient simply becomes
the usual Christoffel symbol defined in terms of v;;.

The covariant derivative of a scalar « is just the ordinary gradient

_ Oa
Q. = 53:—#
The generalization of covariant differentiation to tensors of higher rank
is straightforward. For each contravariant index p a term with I'#, ) times
the tensor is added, but with p in the tensor replaced by A. For each
covariant index v one subtracts a term with I'*,, times the tensor with v
replaced with x. For example,

(1.18)

oT*,
oxP

A particularly useful operation when deriving the hydrodynamic equa-
tions of motion is the covariant divergence. For a vector this simplifies to

yr = L 9 <\/§w>. (1.20)

DpT'uy = Tuy;p = -+ F'up)\T/\y - FKVPTMK. (119)

"= G0
For a tensor it simplifies to
o, = L 0 VITH ) + T, TH (1.21)
M \/57 Ok pv 9 .

where g is the negative of the determinant of the metric tensor

g=—det(gu)- (1.22)

The above relations extend trivially to covariant differentiation in the
ADM three-space by simply writing them in terms of spatial indices. In
what follows, we will usually denote the determinant of the three-metric
by

")/2 = det (’y”) (123)

1.2.4 Bianchi identities

The Riemann curvature tensor obeys some special symmetries known as
the Bianchi identities,

R)\;wn;n + R)\,unu;n + R/\/.mn;u = 0. (124)
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8 1 Introduction

The contracted form of this equation implies [19] that the covariant
divergence of the Einstein tensor also vanishes

G* ., =0. (1.25)
This, together with the Einstein equation (1.3), immediately implies,
., =0, (1.26)

from which the fluid equations of motion will be derived in subsequent
chapters.

In principle this is all we need to describe any system. The problem,
however, is that the Einstein equations as they stand are too general.
What is needed is a reduction of the Einstein equations to a form suitable
for evolving in time. This we now describe.

1.3 (3+1) or ADM formalism

In general relativity and special relativity the distinction between spatial
three dimensions and the time dimension becomes obscure. Indeed, it is an
intriguing and beautiful aspect of relativity that what one means by time
and space depends upon which observer is making the determination.
However, in spite of this ambiguity, one wishes to have a method to
describe a system which is “evolving in time,” as this is the way we
perceive events in Nature.

A way to approach this problem which nearly aligns with Newtonian
intuition is to construct successive “snapshots” or “time slices” of the
spatial (curved) three-space geometry along a sequence of steps in a time-
like coordinate t. That is, spacetime is sliced (or foliated) into a one-
parameter family of hypersurfaces separated by differential displacements
in coordinate time t.

Indeed, there are many ways in which one could follow a time-like di-
mension and watch events unfold in spacetime. However, the one which
most nearly aligns with Newtonian intuition (and one which is usually
amenable to numerical methods) is the ADM (after its inventors Arnowitt,
Deser and Misner [3]) or (3 + 1) formalism [13].

In this approach, the time evolution of the metric is expressed as first-
order time derivatives, while G, contains second-order time derivatives.
The time-like coordinate is chosen along a normal to the space-like
hypersurfaces. Figure 1.1 shows a two-dimensional spacetime depiction
of one way to do this division. That is, space and time are placed on
separate footings by first specifying the proper time interval dr between
the lower and upper hypersurfaces along the direction of the normal 7 to
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1.8 (3+1) or ADM formalism 9

yﬁdtx

t+dt

adtn
(_a2+ﬂ2)1/2 dt

t

x
Fig. 1.1. Schematic depiction of the ADM metric.

A

t+dt

Eulerian
observer

/ Coordinate
Fluid /’ observer

observer

v

Space
Fig. 1.2. Schematic depiction of observer frames in the ADM metric.

the spatial hypersurfaces,
dr = dtn. (1.27)

We call an observer in this frame, the Eulerian observer as depicted in
Figure 1.2.

1.3.1 Eulerian observer

An Eulerian observer moves through spacetime in a direction orthogonal
to all spacetime vectors confined to the spatial hypersurfaces. This frame
does not necessarily move along a force-free trajectory or geodesic in
spacetime. Since the Eulerian frame is defined independently of the
coordinates chosen, it is a good frame in which to measure physi-
cal quantities such as fluid velocity, neutrino energy, etc. The Einstein
equations are solved in this Eulerian frame by projecting them onto the
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10 1 Introduction

the unit normal to the time slices n,. To Eulerian observers, the perfect-
fluid ADM stress energy tensor then appears to be an imperfect fluid with
the following components:

Ty, = dnyn, + sun, + 1,8, + S, (1.28)
where
pa = n'n"T,,, (1.29)
Sy = n°hiTgs, (1.30)
Suw = RS T (1.31)

Here, h, is a projection operator onto the three-slices and is written in
terms of the time-like unit normal (Egs. (1.44), (1.45)),

hy, =6, +nun”. (1.32)

The quantity pgr is called the Hamiltonian density. 1t is an ADM matter
density related to hydrodynamic variables as

pr = phW? — P, (1.33)

where p is the baryon rest mass energy, Eq. (1.12). The quantity h is
called the specific enthalpy. Written in terms of the internal energy per
gram of material ¢ and the pressure P it is

h=1+¢+ P/p. (1.34)

The quantity W = aU" is a generalized Lorentz factor described below.

The quantity s, is the ADM momentum density. In covariant form
its spatial components are equivalent to the spatial components of the
relativistic four-momentum density S, = pp, WU,

§; = Sl = phWUZ’. (1.35)

The space-space component of S, is called the spatial stress. For a
perfect-fluid stress energy tensor, the spatial stress reduces to

SiS;

Sij = Pyij + phUsU; = Pryij + Pk

(1.36)
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