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Introduction

One of the greatest intellectual achievements of the twentieth century is
surely the realization that space and time should be considered as a single
whole — a four-dimensional manifold called spacetime — rather than two
separate, independent entities. This resolved at one stroke the apparent
incompatibility between the physical equivalence of inertial observers
and the constancy of the speed of light, and brought within its wake a
whole new way of looking at the physical world where time and space
are no longer absolute — a fixed, god-given background for all physical
processes — but are themselves physical constructs whose properties and
geometry are dependent on the state of the universe. | am, of course,
referring to the special and general theory of relativity.

This book is about this revolutionary idea and, in particular, the im-
pact that it has had on our view of the universe as a whole. From the
very beginning the emphasis will be on spacetime as a single, undiffer-
entiated four-dimensional manifold, and its physical geometry. But what
do we actually mean by spacetime and what do we mean by its physical
geometry?

A point of spacetime represents an event: an instantaneous, pointlike
occurrence, for example lightning striking a tree. This should be con-
trasted with the notion of a point in space, which essentially represents
the position of a pointlike particle with respect to some frame of reference.
In the spacetime picture, a particle is represented by a curve, its world
line, which represents the sequence of events that it “occupies” during its
lifetime. The life span of a person is, for example, a sequence of events,
starting with birth, ending with death, and punctuated by many happy
and sad events. A short meeting between two friends is, for example, rep-
resented in the spacetime picture as an intersection of their world lines.
The importance of the spacetime picture is that it does not depend on the
initial imposition of any notion of absolute time or absolute space —an
event is something in its own right, and we don’t need to represent it by
(t, p), where p is its absolute position and t is its absolute time.

The geometry of spacetime is not something given a priori, but some-
thing to be discovered from physical observations and general physical
principles. A geometrical statement about spacetime is really a statement
about physics, or a relationship between two or more events that any
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observer would agree exists. For example, the statement that two events
Aand B can be connected by a light ray is geometrical in that if one ob-
server finds it to be true then all observers will find it to be true. On the
other hand, the statement that A and B occur in the same place, like light-
ning striking the same tree twice, is certainly nongeometrical. Certainly
the tree will appear to be in the same place at each lightning strike to a
person standing nearby, but not to a passing astronaut who happens to be
flying by in his spaceship at 10,000 miles per hour.

Just as points and curves are the basic elements of Euclidean geometry,
events and world lines are the basic elements of spacetime geometry. How-
ever, whereas the rules of Euclidean geometry are given axiomatically, the
rules of spacetime geometry are statements about the physical world and
may be viewed as a way of expressing certain fundamental laws of physics.
Just as in Euclidean geometry where we have a special set of curves called
straight lines, in spacetime geometry we have a special set of world lines
corresponding to freely moving (inertial) massive particles (e.g. electrons,
protons, cricket balls, etc.) and an even more special set corresponding
to freely moving massless particles (e.g. photons). In the next few chap-
ters we shall show how the geometry of spacetime can be constructed
from these basic elements. Our main guide in this endeavor will be the
principle of relativity, which, roughly speaking, states the following:

If any two inertial observers perform the same experiment covering asmall
region of spacetime then, all other things being equal, they will come up
with the same results.

In other words, all inertial observers are equal as far as the fundamental
laws of physics are concerned. For example, the results of an experiment
performed by an astronaut in a freely moving, perfectly insulated space-
ship would give no indication of his spacetime position in the universe,
his state of motion, or his orientation. Of course, if he opened his curtains
and looked out of the window, his view would be different from that of
some other inertial observer in a different part of the universe. Thus, not
all inertial observers are equal with respect to their environment, and, as
we shall see, the environment of the universe as a whole selects out a very
special set of inertial observers who are, in a sense, in a state of absolute
rest with respect to the large-scale structure of the universe. This does not,
however, contradict the principle of relativity, because this state of mo-
tion is determined by the state of the universe rather than the fundamental
laws of physics.

The most important geometrical structure we shall consider is called
the spacetime metric. This is a tensorial object that essentially determines
the distance (or time) between two nearby events. It should be emphasized
that the existence of a spacetime metric and its properties are derived
from the principle of relativity and the behavior of light; it is therefore a
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physical object that encodes certain very fundamental laws of nature. The
metric determines another tensorial object called the curvature tensor. At
any given event this essentially encodes all information about the grav-
itational field in the neighborhood of the event. It may also, in a very
real sense, be interpreted as describing the curvature of spacetime. An-
other tensorial object we shall consider is called the energy—-momentum
tensor. This describes the mass (energy) content of a small region of space-
time. That this tensor and the curvature tensor are related via the famous
Einstein equation

Gab = _87TTab

is one of the foundations of general relativity. This equation gives a rela-
tionship between the curvature of spacetime (Gg,) and its mass content
Tap. Needless to say, it has profound implications as far as the geometry
of the universe is concerned.

When dealing with spacetime we are really dealing with the very bed-
rock of physics. All physical processes take place within a spacetime set-
ting and, indeed, determine the very structure of spacetime itself. Unlike
other branches of physics, which are more selective in their subject mat-
ter, the study of spacetime has an all-pervading character, and this leads,
necessarily, to a global picture of the universe as a whole. Given that the
fundamental laws of physics are the same in all regions of the universe, we
are led to a global spacetime description consisting of a four-dimensional
manifold, M, whose elements represent all events in the universe, to-
gether with a metric gap. The matter content of the universe determines
an energy-momentum tensor, Ty, and this in turn determines the curva-
ture of spacetime via Einstein’s equation.

In the same way as the curvature of the earth may be neglected as
long as we stay within a sufficiently small region on the earth’s surface,
the curvature of spacetime (and hence gravity) may be neglected as long
as we restrict attention to a sufficiently small region of spacetime. This
leads to a flat-space description of nature, which is adequate for situations
where gravitational effects may be neglected. The study of flat spacetime
and physical processes within such a setting is called special relativity.
This will be described from a geometric point of view in the first few
chapters of this book.

To bring gravity into the picture we must include the curvature of space-
time. This leads to a very elegant and highly successful theory of gravity
known as general relativity, which is the main topic of this book. Not
only is it compatible with Newtonian theory under usual conditions (e.g.
in the solar system), but it yields new effects under more extreme condi-
tions, all of which have been experimentally verified. Perhaps the most
exciting thing about general relativity is that it predicts the existence of
very exotic objects known as black holes. A black hole is essentially an
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object whose gravitational field is so strong as to prevent even light from
escaping. Though the observational evidence is not yet entirely conclu-
sive, it is generally believed that such objects do indeed exist and may be
quite common.

In the final part of the book we deal with cosmology, which is the study
of the large-scale structure and behavior of the universe as a whole. At first
sight this may seem to be a rash and presumptuous exercise with little
chance of any real success, and better left to philosophers and theolo-
gians. After all, the universe as a whole is a very complicated system with
apparently little order or regularity. It is true that there exist fundamental
laws of nature that considerably reduce the randomness of things (e.g.,
restricting the orbits of planets to be ellipses rather than some arbitrary
curves), but they have no bearing on the initial conditions of a physical
system, which can be — and, in real life, are — pretty random. For exam-
ple, there seems to be no reason why the planets of our solar system have
their particular masses or particular distances from the sun: Newton’s law
of gravity would be consistent with a very different solar system. Things
are, however, much less random on a very small scale. The laws of quan-
tum mechanics, for example, determine the energy levels of a hydrogen
atom independent of any initial conditions, and, on an even smaller scale,
there is hope that masses of all fundamental particles will eventually be
determined from some very basic law of nature. The world is thus very
regular on a small scale, but as we increase the scale of things, irregularity
and randomness seem to increase.

This is true up to a point, but, as we increase our length scale, regu-
larity and order slowly begin to reappear. We certainly know more about
the mechanics of the solar system than about the mechanics of human
interaction, and the structure and evolution of stars is much better un-
derstood than that of bacteria, say. As we increase our length scale still
further to a sufficiently large galactic level, a remarkable degree of order
and regularity becomes apparent: the distribution of galaxies appears to
be spatially homogeneous and isotropic. Clearly, this does not apply to all
observers — even inertial observers. If it were true for one observer, then,
because of the Doppler effect, it would not be true for another observer
with a high relative speed. We shall return to this point shortly.

It thus appears that the universe is not simply a random collection
of irregularly distributed matter, but is a single entity, all parts of which
are in some sense in unison with all other parts. This is, at any rate, the
view taken by the standard model of cosmology, which will be our main
concern.

The universe, as we have seen, appears to be homogeneous and isotro-
pic on a sufficiently large scale. These properties lead us to make an
assumption about the model universe we shall be studying, called the cos-
mological principle. According to this principle the universe is homoge-
neous everywhere and isotropic about every point in it. This assumption
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is very important, and it is remarkable that the universe seems to obey
it. The universe is thus not a random collection of galaxies, but a single
unified entity. As we stated above, the cosmological principle is not true
for all observers, but only for those who are, in a sense, at rest with respect
with the universe as a whole. We shall refer to such observers as being
comoving. With this in mind, the cosmological principle may be stated
in a spacetime context as follows:

e Any event E can be occupied by just one comoving observer, and to this
observer the universe appears isotropic. The set of all comoving world
lines thus forms a congruence of curves in the spacetime of the universe as
awhole, in the sense that any given event lies on just one comoving world
line.

e Given an event E on some comoving world line, there exists a unique
corresponding event E’ on any other comoving world line such that the
physical conditions at E and E’ are identical. We say that E and E’ lie in
the same epoch and have the same universal time t.

By combining the cosmological principle in this form with Einstein’s
equation we obtain a mathematical model of the universe as a whole,
called the standard big-bang model, which makes the following remark-
able predictions:

(i) The universe cannot be static, but must either be expanding or contract-
ing at any given epoch. This is, of course, consistent with Hubble’s obser-
vations, which indicate the universe is expanding in the present epoch.

(i) Given that the universe is now expanding, the matter density p(t) of the
universe at any universal time t in the past must have been a decreasing
function of t, and furthermore there exists a finite number t, such that

lim p(t) = co.

t—>t§
The density of the universe thus increases as we move back in time,
and can achieve an arbitrarily large value within a finite time. From
now on we shall choose an origin for t such that to = 0.

(iif) The t = constant cross sections corresponding to different epochs are
spaces of constant curvature. If their curvature is positive (a closed
universe) then the universe will eventually start contracting. If, on
the other hand, their curvature is negative or zero (an open universe),
then the universe will continue to expand forever.

(iv) Assuming that all matter in the universe was once in thermal equi-
librium, then the temperature T(t) would have been a decreasing
function of t and

lim T(t) = oc.
t—0* () o

In other words, the early universe would have been a very hot place.

7
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(v) There will have existed a time in the past when radiation ceased to
be in thermal equilibrium with ordinary matter. Though not in ther-
mal equilibrium after this time, the radiation will have retained its
characteristic blackbody spectrum and should now be detectable at
a much lower temperature of about 3 K. Such a cosmic background
radiation was discovered by Penzias and Wilson in 1965, thus giving
a very convincing confirmation of the standard model. Furthermore,
this radiation was found to be extremely isotropic, thus lending sup-
port to the cosmological principle.

(vi) Using the well-tried methods of standard particle physics and statis-
tical mechanics, the standard model predicts the present abundance
of the lighter elements in the universe. This prediction has been con-
firmed by observation. For a popular account of this see, for example,
Weinberg (1993).

A very disturbing feature of the standard model is that it predicts that
the universe started with a big bang at a finite time in the past. What
happened before the big bang, and what was the nature of the event cor-
responding to the big bang itself? Such questions are based on deeply
ingrained, but false, assumptions about the nature of time. The spacetime
manifold M of the universe consists, first of all, of all possible events that
can occur in the universe. At this stage no time function is defined on
M, and we do not assume that one exists a priori. However, using certain
physical laws together with the cosmological principle, a universal time
function t can be constructed on M. This assigns a number t(E) to each
event, and, by virtue of its construction, the range of t is all positive num-
bers not including zero. Thus, there simply aren’t any events such that
t(E) < 0, and, in particular, no event Egg (the big bang itself) such that
t(Egg) = 0 exists. Universal time in this sense is similar to absolute tem-
perature as defined in statistical mechanics [see, for example, Buchdahl
(1975)]. Here we start with the notion of a system in thermal equilibrium,
and then, using certain physical principles, construct a temperature func-
tion T that assigns a number T(S) — the temperature of S— to any system
Sin thermal equilibrium. The function T does not exist a priori but must
be constructed. The range of the resulting function is all positive numbers
not including zero. Thus, systems such that T(S) < 0 simply do not exist.

One of the most appealing features of the standard model is that it
follows logically from Einstein’s equation and the cosmological princi-
ple. Except possibly for the very early universe, we are on firm ground
with Einstein’s equation. However, the cosmological principle should be
cause for concern. After all, the universe is not exactly isotropic and ho-
mogeneous — even on a very large scale —and deviations from isotropy
and homogeneity might well imply a nonsingular universe without an
initial big bang. That this cannot be the case can be seen from the singu-
larity theorems of Hawking and Penrose. These theorems imply that if
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the universe is approximately isotropic and homogeneous in the present
epoch —which is the case — then a singularity must have existed some-
time in the past. A very readable account of these singularity theorems
can be found in Hawking and Penrose (1996), but for the full details see
Hawking and Ellis (1973).

Let us now return briefly to the principle of relativity. We have tacitly
assumed that given two events on the world line of an observer (such
events are said to have timelike separation) there is an absolute sense in
which one occurred before the other. For example, | am convinced that
my 21st birthday occurred before my 40th birthday. But are we really jus-
tified in assuming that “beforeness” in this sense is any more than a type
of prejudice common to all human beings and therefore more a part of
psychology than fundamental physics? There does, of course, tend to be
a very real physical difference between most timelike-separated events.
A wine glass in my hand is very different from the same wine glass ly-
ing shattered on the floor, and we would be inclined to say that these
two events had a very definite and obvious temporal order. However, the
physical laws governing the individual glass molecules are completely
symmetric with respect to time reversal, and, though highly improbable,
it would in principle be possible for the shattered glass to reconstitute
itself and jump back into my hand. Of course, such events never hap-
pen in practice, at least when one is sober, but this has more to do with
improbable boundary conditions than the laws of physics.

For many years it was felt that all laws of physics ought to be time-
symmetric in this way. This is certainly true for particles moving under
the influence of electromagnetic and gravitational interactions (e.g. glass
molecules), but the discovery of weak elementary-particle interactions in
the fifties has called into question this attitude. It is now known that there
exist physical processes governed by weak interactions (e.g. neutral K-
meson decay) that are not time-symmetric. These processes indicate that
there does indeed exist a physically objective sense in which the notion
of “beforeness” can be assigned to one of two timelike-separated events.
Of course, temporal order can be defined with respect to an observer’s
environmentin the universe — if p(E) > p(E’) then, given that the universe
is expanding, we would be inclined to say that event E occurred before
event E’ —but the type of temporal order we are talking about here is
with respect to the fundamental laws of physics. A good account of time
asymmetry is given in Davies (1974).

Another surprising feature of processes governed by weak interactions
is that they can exhibit a definite “handedness.” However, unlike that
found (on the average) in the human population, which, as far as we
know, is a mere accident of evolution, the type of handedness exhibited
by weakly interacting processes is universal and an integral part of the
objective physical world. It can, in fact, be used to obtain a physical dis-
tinction between right-handed and left-handed frames of reference, since

9
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an experimental configuration based on a right-handed frame will, in gen-
eral, yield a different set of measurements from one based on a left-handed
frame. For an entertaining discussion of these ideas see Gardner (1967).

Finally, we should say something about the physical units used in this
book. Clearly, nature does not care which system of units we use: the time
interval between two events on a person’s world line is, for example, the
same whether she uses seconds or hours as the unit. We shall therefore
use a system of units in terms of which the fundamental laws of physics
assume their simplest form.

Let us initially agree to use a second as our unit of time — we’ll choose
a more natural unit of time later. We then choose our unit of distance to
be a light-second. This is a particularly natural unit of length, since one
of the fundamental laws of nature is that light always has the same speed
with respect to any observer. By choosing a light-second as our unit of
distance we are essentially encoding this law into our system of units.
Note that, in units of seconds and light-seconds, the speed of light c is, by
definition, unity.

Another feature of light, and one that forms the basis of quantum theory,
isthat the energy of asingle photon is exactly proportional to its frequency.
We use this to define our unit of energy as that of a photon with angular
frequency one. In terms of this unit of energy, Planck’s constant h is, by
definition, unity.

Finally, since mass is simply another form of energy (this will be shown
when we come to consider special relativity), we also measure mass in
terms of angular frequency. For example, if we wish to measure the mass
of a particle in units of frequency, we could bring it into contact with its
antiparticle. By arranging things such that the resulting explosion consists
of just two photons, the frequency of one of these photons will give the
mass of our particle in units of frequency.

Since we are defining distance, energy, and mass in units of time, it
is important to have a good definition of what we mean by an accurate
clock. As a provisional definition, we can define a clock as simply any
smoothly running, cyclical device that is unaffected by changes in its
immediate environment. This, for example, rules out pendulum clocks.
But how can we check that a clock is actually unaffected by changes in
its environment? It is no good appealing to some other, better clock — not
even the most up-to-date atomic clock, which presumably ticks away the
hours in a cellar of the Greenwich observatory — as this would lead to a
circular argument. There is only one certain way and that is to appeal to
the properties of nature herself. Given a clock, together with the appropri-
ate apparatus, all in a unchanging environment, it is, at least in principle,
possible to determine the gravitational constant G in units of time. Recall
that we are defining both mass and distance in units of time. If we now
change the environment (e.g. by changing the temperature or transferring
the laboratory to the moon) and the value of G remains unchanged, we
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can say, by definition, that we have a good clock and one unaffected by
changes in its environment.

The gravitational constant is, of course, defined by G = ar?/m, where
a is the acceleration of a particle of mass m caused by the gravitational
influence of an identical particle at a distance r. If, for example, we change
our unit of time from one second to one minute, thenr — r/60 (one light-
second = % light-minutes), m — 60m (one cycle per second = 60 cycles
per minute), and similarly a — 60a. Thus G — G/(60)2. A particularly
convenient unit of time for gravitational physics is that which makes
G = 1. Thisiscalled aPlanck second or a gravitational second. Whenever
we are dealing with gravity we shall use this unit of time; otherwise, for
simplicity, we shall stick with ordinary seconds.

Nature gives us many other natural time units. A particle physicist
might, for example, prefer to use an electron second (a unit of time such
that me = 1) or even a proton second. It is a remarkable feature of our uni-
verse that clocks reading electron, proton, and gravitational time appear
to remain synchronous.

EXERCISES

1.1 Calculate the following quantities in terms of natural units where ¢ =
h = G = 1: the mass and radius of the sun, the mass and spin of an
electron, and the mass of a proton.

1.2 Another set of natural units is where ¢ = h = m. = 1, where m, is
the mass of an electron. In terms of these units calculate the quantities
mentioned in Exercise 1.1.

1.3 You have made email contact with an experimental physicist on the
planet Pluto. She wishes to know your age, height, and mass, but has
never heard of pounds, feet, or seconds (or any other earthly units).
By instructing her to perform a series of experiments, show how this
information can be conveyed.

1.4 Your friend on Pluto also wants to know your body temperature. How
can this information be conveyed? (Hint: Use your knowledge of sta-
tistical mechanics, and choose units such that Boltzmann’s constant
is unity.)

15 According to the principle of relativity there is no preferred state of
inertial motion. Does this conflict with the cosmological principle?
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