CAMBRIDGE MONOGRAPHS ON
MECHANICS AND APPLIED MATHEMATICS

General Editors
G. K. Batchelor, F. R. S.
Department of Applied Mathematics, University of Cambridge

C. Wunsch
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology

J. Rice
Division of Applied Sciences, Harvard University

DYNAMIC FRACTURE MECHANICS
Dynamic Fracture Mechanics

L. B. Freund
Brown University
CONTENTS

Preface xi
List of symbols xiv

1 Background and overview 1
 1.1 Introduction 1
 1.1.1 Inertial effects in fracture mechanics 2
 1.1.2 Historical origins 3
 1.2 Continuum mechanics 13
 1.2.1 Notation 13
 1.2.2 Balance equations 16
 1.2.3 Linear elastodynamics 22
 1.2.4 Inelastic materials 29
 1.3 Analytic functions and Laplace transforms 30
 1.3.1 Analytic functions of a complex variable 30
 1.3.2 Laplace transforms 33
 1.4 Overview of dynamic fracture mechanics 37
 1.4.1 Basic elastodynamic solutions for a stationary crack 38
 1.4.2 Further results for a stationary crack 40
 1.4.3 Asymptotic fields near a moving crack tip 42
 1.4.4 Energy concepts in dynamic fracture 44
 1.4.5 Elastic crack growth at constant speed 47
 1.4.6 Elastic crack growth at nonuniform speed 49
 1.4.7 Plasticity and rate effects during crack growth 52

2 Basic elastodynamic solutions for a stationary crack 55
 2.1 Introduction 55
 2.2 Suddenly applied antiplane shear loading 60
 2.3 Green’s method of solution 65
Contents

2.4 Suddenly applied crack face pressure 72
2.5 The Wiener-Hopf technique 77
 2.5.1 Application of integral transforms 78
 2.5.2 The Wiener-Hopf factorization 84
 2.5.3 Inversion of the transforms 91
 2.5.4 Higher order terms 96
2.6 Suddenly applied in-plane shear traction 97
2.7 Loading with arbitrary time dependence 100

3 Further results for a stationary crack 104
 3.1 Introduction 104
 3.2 Nonuniform crack face traction 106
 3.2.1 Suddenly applied concentrated loads 107
 3.2.2 Fundamental solution for a moving dislocation 110
 3.2.3 The stress intensity factor history 112
 3.3 Sudden loading of a crack of finite length 117
 3.4 Three-dimensional scattering of a pulse by a crack 123
 3.5 Three-dimensional stress intensity factors 131
 3.6 Fracture initiation due to dynamic loading 140
 3.6.1 The Irwin criterion 140
 3.6.2 Qualitative observations 141
 3.6.3 Experimental results 144

4 Asymptotic fields near a moving crack tip 152
 4.1 Introduction 152
 4.2 Elastic material; antiplane shear 155
 4.3 Elastic material; in-plane modes of deformation 160
 4.3.1 Singular field for mode I 161
 4.3.2 Higher order terms for mode I 169
 4.3.3 Singular field for mode II 170
 4.3.4 Supersonic crack tip speed 171
 4.4 Elastic-ideally plastic material; antiplane shear 175
 4.4.1 Asymptotic fields for steady dynamic growth 178
 4.4.2 Comparison with equilibrium results 182
 4.5 Elastic-ideally plastic material; plane strain 184
 4.5.1 Asymptotic field in plastically deforming regions 187
 4.5.2 A complete solution 190
 4.5.3 Other possible solutions 194
 4.5.4 Discontinuities 197
 4.5.5 Elastic sectors 202
 4.6 Elastic-viscous material 206
Contents

4.6.1 Antiplane shear crack tip field 207
4.6.2 Plane strain crack tip field 214
4.7 Elastic-viscoplastic material; antiplane shear 215

5 Energy concepts in dynamic fracture 221

5.1 Introduction 221
5.2 The crack tip energy flux integral 224
 5.2.1 The energy flux integral for plane deformation 224
 5.2.2 Some properties of F(Γ) 227
5.3 Elastodynamic crack growth 231
 5.3.1 Dynamic energy release rate 231
 5.3.2 Cohesive zone models of crack tip behavior 235
 5.3.3 Special forms for numerical computation 240
5.4 Steady crack growth in a strip 243
 5.4.1 Strip with uniform normal edge displacement 243
 5.4.2 Shear crack with a cohesive zone in a strip 247
5.5 Elementary applications in structural mechanics 250
 5.5.1 A one-dimensional string model 250
 5.5.2 Double cantilever beam configuration 254
 5.5.3 Splitting of a beam with a wedge 257
 5.5.4 Steady crack growth in a plate under bending 261
 5.5.5 Crack growth in a pressurized cylindrical shell 262
5.6 A path-independent integral for transient loading 264
 5.6.1 The path-independent integral 264
 5.6.2 Relationship to stress intensity factor 269
 5.6.3 An application 271
5.7 The transient weight function method 274
 5.7.1 The weight function based on a particular solution 274
 5.7.2 A boundary value problem for the weight function 280
5.8 Energy radiation from an expanding crack 289

6 Elastic crack growth at constant speed 296

6.1 Introduction 296
6.2 Steady dynamic crack growth 298
 6.2.1 General solution procedure 299
 6.2.2 The Yoffe problem 300
 6.2.3 Concentrated shear traction on the crack faces 305
 6.2.4 Superposition and cohesive zone models 306
 6.2.5 Approach to the steady state 310
viii

Contents

6.3 Self-similar dynamic crack growth 313
 6.3.1 General solution procedure 314
 6.3.2 The Broberg problem 318
 6.3.3 Symmetric expansion of a shear crack 330
 6.3.4 Nonsymmetric crack expansion 334
 6.3.5 Expansion of circular and elliptical cracks 336
6.4 Crack growth due to general time-independent loading 340
 6.4.1 The fundamental solution 342
 6.4.2 Arbitrary initial equilibrium field 350
 6.4.3 Some illustrative cases 353
 6.4.4 The in-plane shear mode of crack growth 355
 6.4.5 The antiplane shear mode of crack growth 356
6.5 Crack growth due to time-dependent loading 356
 6.5.1 The fundamental solution 358
 6.5.2 Arbitrary delay time with crack face pressure 362
 6.5.3 Incident plane stress pulse 365

7 Elastic crack growth at nonuniform speed 367
 7.1 Introduction 367
 7.2 Antiplane shear crack growth 369
 7.3 Plane strain crack growth 378
 7.3.1 Suddenly stopping crack 379
 7.3.2 Arbitrary crack tip motion 387
 7.3.3 In-plane shear crack growth 392
 7.4 Crack tip equation of motion 393
 7.4.1 Tensile crack growth 395
 7.4.2 Fine-scale periodic fracture resistance 401
 7.4.3 Propagation and arrest of a mode II crack 407
 7.4.4 A one-dimensional string model 410
 7.4.5 Double cantilever beam: approximate equation of motion 421
 7.5 Tensile crack growth under transient loading 426
 7.5.1 Incident plane stress pulse 426
 7.5.2 An influence function for general loading 431
 7.6 Rapid expansion of a strip yield zone 432
 7.7 Uniqueness of elastodynamic crack growth solutions 437

8 Plasticity and rate effects during crack growth 442
 8.1 Introduction 442
 8.2 Viscoelastic crack growth 442
 8.3 Steady crack growth in an elastic-plastic material 448
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.1 Plastic strain on the crack line</td>
<td>451</td>
</tr>
<tr>
<td>8.3.2 A growth criterion</td>
<td>459</td>
</tr>
<tr>
<td>8.3.3 A formulation for the complete field</td>
<td>461</td>
</tr>
<tr>
<td>8.3.4 The toughness–speed relationship</td>
<td>465</td>
</tr>
<tr>
<td>8.3.5 The steady state assumption</td>
<td>467</td>
</tr>
<tr>
<td>8.4 High strain rate crack growth in a plastic solid</td>
<td>469</td>
</tr>
<tr>
<td>8.4.1 High strain rate plasticity</td>
<td>470</td>
</tr>
<tr>
<td>8.4.2 Steady crack growth with small-scale yielding</td>
<td>474</td>
</tr>
<tr>
<td>8.4.3 An approximate analysis</td>
<td>477</td>
</tr>
<tr>
<td>8.4.4 Rate effects and crack arrest</td>
<td>481</td>
</tr>
<tr>
<td>8.5 Fracture mode transition due to rate effects</td>
<td>485</td>
</tr>
<tr>
<td>8.5.1 Formulation</td>
<td>486</td>
</tr>
<tr>
<td>8.5.2 A rate-dependent cohesive zone</td>
<td>488</td>
</tr>
<tr>
<td>8.5.3 The crack growth criteria</td>
<td>494</td>
</tr>
<tr>
<td>8.6 Ductile void growth</td>
<td>498</td>
</tr>
<tr>
<td>8.6.1 Spherical expansion of a void</td>
<td>500</td>
</tr>
<tr>
<td>8.6.2 A more general model</td>
<td>506</td>
</tr>
<tr>
<td>8.7 Microcracking and fragmentation</td>
<td>508</td>
</tr>
<tr>
<td>8.7.1 Overall energy considerations</td>
<td>509</td>
</tr>
<tr>
<td>8.7.2 Time-dependent strength under pulse loading</td>
<td>512</td>
</tr>
</tbody>
</table>

Bibliography

Page 521

Index

Page 559
This book is an outgrowth of my involvement in the field of dynamic fracture mechanics over a period of nearly twenty years. This sub-branch of fracture mechanics has been wonderfully rich in scope and diversity, attracting the attention of both researchers and practitioners with backgrounds in the mechanics of solids, applied mathematics, structural engineering, materials science, and earth science. A wide range of analytical, experimental, and computational methods have been brought to bear on the area. Overall, the field of dynamic fracture is highly interdisciplinary, it provides a wealth of challenging fundamental issues for study, and new results have the potential for immediate practical application. In my view, this combination of characteristics accounts for its continued vitality.

I have written this book in an effort to summarize the current state of the mechanics of dynamic fracture. The emphasis is on fundamental concepts, the development of mathematical models of phenomena which are dominated by mechanical features, and the analysis of these models. Mathematical problems which are representative of the problem classes that comprise the area are stated formally, and they are also described in common language in an effort to make their features clear. These problems are solved using mathematical methods that are developed to the degree required to make the presentation more or less self-contained. Experimental and computational approaches have been of central importance in this field, and relevant results are cited in the course of discussion. The extraordinary contributions of the few individuals who pioneered the area of dynamic fracture mechanics occupy prominent positions in this discussion. One hope in preparing this book is that people with new perspectives will be attracted to the field, which continues to provide
xii

Preface

fascinating and technically important challenges. Perhaps the book can serve as a guide to further development of the area.

The reader is assumed to be familiar with concepts of continuum mechanics and methods of applied mathematics to the level normally provided through the first year of study in a graduate program in solid mechanics in the United States. A brief summary of relevant results is included in the first chapter in order to establish notation and to provide a common source for reference in later chapters. Some background in equilibrium fracture mechanics would be helpful, of course, but none is presumed. In terms of graduate instruction in fracture mechanics, the book could serve as a text for a course devoted to dynamic fracture mechanics or, for a more general course, as a supplement to other books which provide broader coverage of the whole of fracture mechanics. The overall organization of the book is evident from the chapter titles. The brief overview included in Chapter 1 can serve as a guide to those readers interested in using the book as a source of reference for specific results.

The bibliography is an important part of the book. In view of contemporary publication practices, the compilation of an all-inclusive bibliography in any technical area is an impossible task. Nonetheless, the bibliography is intended to be comprehensive in the sense that it includes entries which describe research results on essentially all aspects of dynamic fracture. With only a few exceptions, the entries are either articles published in the open literature or relevant textbooks and monographs. Thus, most of the references should be available in a reasonably complete technical library. All references cited in the text are included in the bibliography, and many additional references are included as well. Some judgment was required in the selection of references for citation in the text, and I have done my best to accurately identify sources for key steps in the evolution of ideas.

I am indebted to a number of colleagues who read drafts of various chapters of the book. Those who offered suggestions and encouragement in this way are John Hutchinson, Fred Nilsson, Ares Rosakis, and John Willis. A special thanks goes to Jim Rice, Editor of this series, who generously read a draft of the entire manuscript. It has been among my greatest fortunes to be a member of the Solid Mechanics Group at Brown University, which has provided an intellectually stimulating and most congenial environment over the years. I am especially grateful to my colleagues Rod Clifton, Alan Needleman, Michael Ortiz, Fong Shih, and Jerry Weiner for their willingness to
Preface xiii

read and discuss some of the material that is included here. My own views on the mechanics of dynamic fracture and its fundamental precepts have been formed over a long period of time through interactions with people far too numerous to mention individually. This group includes the many colleagues and students with whom I have collaborated and written joint papers; they are identified in the bibliography. It also includes those who, through questions and discussions, showed me where my own understanding of certain points had been incomplete.

I also thank Peter-John Leone, Earth Sciences Editor, Rhona Johnson, Manuscript Development Editor, and Louise Calabro Grendel, Production Editor, of Cambridge University Press in New York for the efficient way in which they have managed the preparation of the book and for their sensitivity in dealing with my concerns on the matter. It has been a pleasure to be involved in long-term programs of research on fracture mechanics funded by the Office of Naval Research and by the National Science Foundation. These programs, and the collaborations that they have fostered, have been invaluable.

Finally, I thank my wife Colleen and our sons, Jon, Jeff, and Steve, who enthusiastically adopted the mission of writing this book as their own. Their interest and unwavering devotion have lightened the task immensely.

L. B. Freund
LIST OF SYMBOLS

Mathematical symbols and functions are defined the first time that they are used in the book. Brief definitions of the most frequently used symbols and functions are listed below. Some symbols necessarily have different definitions in different sections. In such cases, definitions are stated locally and are used consistently within sections.

\(a \) \hspace{1cm} \text{Inverse dilatational wave speed } c_d^{-1}; \text{ half length of a Griffith crack}

\(A_I(v) \) \hspace{1cm} \text{Universal function of crack tip speed for mode I deformation (similar for modes II and III)}

\(b \) \hspace{1cm} \text{Inverse shear wave speed } c_s^{-1}; \text{ a material parameter}

\(c \) \hspace{1cm} \text{Inverse Rayleigh wave speed } c_R^{-1}; \text{ an elastic wave speed}

\(c_d \) \hspace{1cm} \text{Elastic dilatational wave speed}

\(c_o \) \hspace{1cm} \text{Speed of longitudinal waves in an elastic bar}

\(c_R \) \hspace{1cm} \text{Elastic Rayleigh surface wave speed}

\(c_s \) \hspace{1cm} \text{Elastic shear wave speed}

\(C_I \) \hspace{1cm} \text{Dimensionless factor for the mode I asymptotic stress field (similar for modes II and III)}

\(C_{ijkl} \) \hspace{1cm} \text{Components of the elastic stiffness tensor}

\(d \) \hspace{1cm} \text{Inverse crack tip speed } v^{-1}

\(d_{ij} \) \hspace{1cm} \text{Components of the symmetric part of the velocity gradient tensor}

\(D(v) \) \hspace{1cm} \text{The quantity } 4\alpha_d\alpha_s - (1 + \alpha_s^2)^2; \text{ a function of crack tip speed}

\(E \) \hspace{1cm} \text{Young’s elastic modulus}

\(E_R \) \hspace{1cm} \text{Far-field radiated energy}

\(F(\Gamma) \) \hspace{1cm} \text{Energy flux through contour } \Gamma

\(G \) \hspace{1cm} \text{Energy release rate; dynamic energy release rate}
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_a</td>
<td>Crack arrest fracture energy</td>
</tr>
<tr>
<td>G_c</td>
<td>Critical value of energy release rate</td>
</tr>
<tr>
<td>h</td>
<td>Thickness of a beam; width of a strip</td>
</tr>
<tr>
<td>$h_i(x,t)$</td>
<td>Components of the dynamic weight function</td>
</tr>
<tr>
<td>$H(t)$</td>
<td>Unit step function</td>
</tr>
<tr>
<td>$J_N(\Gamma,s)$</td>
<td>Path independent integral of Laplace transformed fields</td>
</tr>
<tr>
<td>$k(v)$</td>
<td>Universal function of crack tip speed for elastic crack growth in mode I</td>
</tr>
<tr>
<td>$k_{II}(v)$</td>
<td>Universal function of crack tip speed for elastic crack growth in mode II (similar for mode III)</td>
</tr>
<tr>
<td>K_I</td>
<td>Elastic stress intensity factor for mode I (similar for modes II and III)</td>
</tr>
<tr>
<td>K_{Ia}</td>
<td>Value of stress intensity factor at crack arrest; crack arrest toughness (similar for modes II and III)</td>
</tr>
<tr>
<td>$K_{Ia_{\text{appl}}}$</td>
<td>Remotely applied stress intensity factor</td>
</tr>
<tr>
<td>K_{Ic}</td>
<td>Value of stress intensity factor at fracture initiation; fracture toughness (similar for modes II and III)</td>
</tr>
<tr>
<td>K_{Id}</td>
<td>Value of stress intensity factor during crack growth; dynamic fracture toughness (similar for modes II and III)</td>
</tr>
<tr>
<td>$l,l(t)$</td>
<td>Crack length; amount of crack growth</td>
</tr>
<tr>
<td>l</td>
<td>Instantaneous crack tip speed</td>
</tr>
<tr>
<td>l^\pm</td>
<td>Limit as position $x = l$ is approached through values of x greater than l $(+)$ or less than l $(-)$</td>
</tr>
<tr>
<td>l_c</td>
<td>Critical crack length</td>
</tr>
<tr>
<td>l_0</td>
<td>Initial crack length</td>
</tr>
<tr>
<td>m</td>
<td>Normalized crack tip speed v/c_s or v/c_R</td>
</tr>
<tr>
<td>M_{ijkl}</td>
<td>Components of the elastic compliance tensor</td>
</tr>
<tr>
<td>n</td>
<td>Crack tip bluntness parameter; a material parameter</td>
</tr>
<tr>
<td>n_i</td>
<td>Components of unit vector; normal to surface or curve</td>
</tr>
<tr>
<td>$o(f(x))$</td>
<td>Asymptotically dominated by f as $x \to$ a limit point</td>
</tr>
<tr>
<td>$O(f(x))$</td>
<td>Asymptotically proportional to f as $x \to$ a limit point</td>
</tr>
<tr>
<td>$p(x)$</td>
<td>Pressure distribution</td>
</tr>
<tr>
<td>p^*</td>
<td>Magnitude of a concentrated normal force</td>
</tr>
<tr>
<td>$P(\zeta)$</td>
<td>Amplitude of Φ</td>
</tr>
<tr>
<td>P_c</td>
<td>Dimensionless combination of material parameters for a strain-rate-dependent elastic-plastic solid</td>
</tr>
<tr>
<td>q^*</td>
<td>Magnitude of a concentrated shear force</td>
</tr>
<tr>
<td>$Q(\zeta)$</td>
<td>Amplitude of Ψ</td>
</tr>
</tbody>
</table>
Symbols

r Polar coordinate
$r_d \exp(i\theta_d)$ Polar form of the complex variable $x + i\alpha_d y$
r_p Plastic zone size
$r_s \exp(i\theta_s)$ Polar form of the complex variable $x + i\alpha_s y$
R Region in space; region in a plane
$R(\zeta)$ Rayleigh wave function
s Laplace transform parameter; a real variable
s_{ij} Components of the deviatoric stress tensor
$S_\pm(\zeta)$ Factors of the Rayleigh wave function that are nonzero and analytic in overlapping half planes
t Time coordinate
T Kinetic energy density
T_{tot} Total kinetic energy of a body
T_r, T_i Traction vector; components of traction vector
u_i Components of particle displacement vector ($i = 1, 2, 3$ or $i = x, y, z$)
\dot{u}_i Components of particle velocity vector
\ddot{u}_i Components of particle acceleration vector
$u_n^k(x, t)$ Normal surface displacement for Lamb’s problem
$u_-(x, t)$ Displacement distribution for $x < 0$
U Stress work density; elastic strain energy density
U_{tot} Total stress work; total strain energy
v Crack tip speed
w Displacement for antiplane shear deformation
x_i Rectangular coordinates ($i = 1, 2, 3$)
x, y, z Rectangular coordinates
$\alpha(\zeta)$ The function $(a^2 - \zeta^2)^{1/2}$
α_d, α_s The quantities $\sqrt{1 - v^2/c_d^2}$ and $\sqrt{1 - v^2/c_s^2}$
$\beta(\zeta)$ The function $(b^2 - \zeta^2)^{1/2}$
γ A material parameter
$\dot{\gamma}_0$ Viscosity parameter of a rate dependent plastic material
Γ Crack tip contour; specific fracture energy
$\Gamma(\cdot)$ Gamma (factorial) function
$\Gamma_c, \Gamma_m, \Gamma_o$ Constant values of specific fracture energy
δ_t Crack tip opening displacement
$\delta(t)$ Dirac delta function
Δ Amplitude of an elastic dislocation
ϵ A small real parameter
ϵ_{ij} Components of the small strain tensor
Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ_{ij}</td>
<td>Components of the elastic strain tensor</td>
</tr>
<tr>
<td>ϵ_{ij}^p</td>
<td>Components of the plastic strain tensor</td>
</tr>
<tr>
<td>ζ</td>
<td>Complex variable; Laplace transform parameter</td>
</tr>
<tr>
<td>η</td>
<td>Rectangular coordinate</td>
</tr>
<tr>
<td>θ</td>
<td>Polar coordinate</td>
</tr>
<tr>
<td>κ</td>
<td>Parameter determined by the behavior of the Rayleigh wave function as $</td>
</tr>
<tr>
<td>λ</td>
<td>Lamé elastic constant</td>
</tr>
<tr>
<td>Λ</td>
<td>Length of cohesive zone</td>
</tr>
<tr>
<td>μ</td>
<td>Lamé elastic constant; elastic shear modulus</td>
</tr>
<tr>
<td>ν</td>
<td>Poisson’s ratio</td>
</tr>
<tr>
<td>ν, ν_i</td>
<td>Unit vector normal to a surface or curve</td>
</tr>
<tr>
<td>ξ</td>
<td>Rectangular coordinate</td>
</tr>
<tr>
<td>ρ</td>
<td>Material mass density</td>
</tr>
<tr>
<td>σ</td>
<td>Mean stress; effective stress</td>
</tr>
<tr>
<td>$\sigma(x)$</td>
<td>Normal traction within a cohesive zone</td>
</tr>
<tr>
<td>σ_{ij}</td>
<td>Components of the stress tensor</td>
</tr>
<tr>
<td>σ_∞</td>
<td>Amplitude of remotely applied tension</td>
</tr>
<tr>
<td>σ_o</td>
<td>Tensile flow stress of an ideally plastic material</td>
</tr>
<tr>
<td>$\sigma_n(x,t)$</td>
<td>Normal traction distribution for $x > 0$</td>
</tr>
<tr>
<td>σ^*</td>
<td>Magnitude of applied normal traction</td>
</tr>
<tr>
<td>Σ^{I}_{ij}</td>
<td>Angular variation of asymptotic crack tip stress field for mode I (similar for modes II and III)</td>
</tr>
<tr>
<td>τ_∞</td>
<td>Amplitude of remotely applied shear traction</td>
</tr>
<tr>
<td>τ_o</td>
<td>Shear flow stress of an ideally plastic material</td>
</tr>
<tr>
<td>$\tau_n(x,t)$</td>
<td>Shear traction distribution on $x > 0$</td>
</tr>
<tr>
<td>τ^*</td>
<td>Magnitude of applied shear traction</td>
</tr>
<tr>
<td>ϕ</td>
<td>Lamé scalar displacement potential function</td>
</tr>
<tr>
<td>Φ</td>
<td>Double Laplace transform of ϕ</td>
</tr>
<tr>
<td>ψ, ψ_i</td>
<td>Lamé vector displacement potential function</td>
</tr>
<tr>
<td>ψ</td>
<td>Magnitude of ψ for plane deformation; local shear angle in plastically deforming region</td>
</tr>
<tr>
<td>Ψ</td>
<td>Double Laplace transform of ψ</td>
</tr>
<tr>
<td>Ω</td>
<td>Potential energy</td>
</tr>
<tr>
<td>Ω_S</td>
<td>Potential energy increase due to creation of free surface</td>
</tr>
<tr>
<td>$(cc.ss.nn)$</td>
<td>Equation number nn in Section ss of Chapter cc</td>
</tr>
<tr>
<td>$(c.s.n)_m$</td>
<td>The mth equation in a group of equations identified by the single number $(c.s.n)$</td>
</tr>
</tbody>
</table>