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FOREWORD
K.J. Falconer

In this foreword, citations by date refer to the end of the main book, and
citations by initials in square brackets [] refer to (generally more recent)
books and papers listed at the end of the foreword.

§1 Introduction

I am delighted that Professor Rogers’ book Hausdorff Measures is to be
republished and it is a great pleasure to write a foreword to the new edi-
tion. The book has had a profound influence, both directly and indirectly,
on geometric measure theory and on the very many areas of mathematics
that relate to Hausdorff measures and dimensions.

Professor Rogers’ two books, this one and Packing and Covering
[Rogl], have both become ‘classics’ and remain indispensable to research
workers in the subjects. They are self-contained and lead the reader from
first degree level to the frontiers of research. The books are notable for
their clarity and precision and the detailed proofs make them especially
suitable for the student.

This foreword attempts several things. It indicates the historical and
mathematical context of Hausdorfl measures, both before and since the
publication of the book. It describes how some recent developments have
affected the context and perception of the subject and it presents a selec-
tion of contemporary applications of Hausdorff measures. These combine
to demonstrate the fundamental role of Hausdorff measures, both as a
subject in their own right and in applications throughout mathematics.

To do justice to the progress that has stemmed from the material in
this book since its publication nearly thirty years ago would require far
more space than is available. The references cited point to sources of
further information but are not necessarily the most significant research
publications and not remotely exhaustive. A full bibliography would run
to hundreds of pages.

Historical context

Measures, as a device for specifying the size of sets, were essentially in-
troduced by Borel in 1895. In 1915 Carathéodory gave a very general
construction for outer measures that included one-dimensional or linear
measures as a special case, and he indicated that this could be extended
to s-dimensional measures in R™ for other integers s. In 1919 Haus-
dorff pointed out, in his famous paper, that such measures could be con-
structed for non-integral s, and amongst various examples he showed that
the middle-third Cantor set has positive finite (log2/log 3)-dimensional
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measure. Since then, measures of this type have been referred to as
Hausdorff measures.

The Hausdorfl measure constructed from the dimension function or
gauge function h € H is denoted by u® (see Chapter 2, §1), with the
particularly important case of s-dimensional Hausdorff measure puPs ob-
tained by taking h,(t) = ¢*. The Hausdorff dimension, dimE, of a set
E is defined to be the infimum value of s such that p" < oco. (This
numerical value of dimension is coarser than that implied by the partial
order < of Chapter 2 §4.) A set E with 0 < p**(E) < oo is termed an
s-set.

A key feature of Hausdorff measures is the geometrical element in their
definition which is reflected in their properties. In particular the scaling
property, that p*s(AE) = X*uP+(E) where AE is a similar copy of E scaled
by a factor A, generalises the familiar scaling properties of length, area
and volume. This geometrical aspect led to the programme, pioneered by
Besicovitch and his students through the middle half of the 20th century,
of relating the geometry of a set E, in particular properties of its tangents
and projections, to properties of Hausdorffl measures on E. An early
achievement (Besicovitch (1928, 1938)) was to show that a l-set in the
plane could be decomposed into a ‘regular’ part and an ‘irregular’ part,
which could be distinguished either measure-theoretically, in terms of the
existence of densities lim,_.o(u"*(B(z,7) N E)/r*), or geometrically, in
terms of rectifiability and the existence of tangents. Later, attention was
turned to s-sets for non-integral s; their irregularity is also manifested in
both measure-theoretic and in geometric ways (see Marstrand (1954b)).

For much of this period the theory of generalised capacities developed
alongside Hausdorff measures, and Frostman [Fro] crystallised the link
between potential theory and dimensions in ‘Frostman’s lemma’: that

ps(E) > 0 if and only if there exists a (non-trivial) measure v supported
by E such that

v(B(z,r)) <’ (1)

for all z € R and r > 0. It follows that dimFE' is the supremum value of
s for which there exists a positive measure v on E such that the energy
[ flz — y|=*dv(z)dv(y) is finite. Kaufman’s (1968) ‘potential theoretic
method’, which utilises this relationship, has proved an extremely ver-
satile tool in geometrical problems involving projections, intersections,
distance sets and Brownian motion, see [Fall, Fal4, Kah, Mat].
Hausdorff measures and dimensions were found to be very well-suited
to quantifying sets of Lebesgue measure zero which were nonetheless ‘sub-
stantial’. Such sets were encountered in many areas of mathematics,
including number theory, stochastic processes and dynamical systems.
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Besicovitch died in 1970, and his proposed book Geometry of Sets
of Points on the geometry of Hausdorfl measures was never written,
though a couple of short draft chapters exist. (Falconer’s tract [Fall]
may be something like Besicovitch had in mind.) Self-contained accounts
of Hausdorff measures and their geometry appeared in book form for
the first time: Federer’s Geometric Measure Theory [Fed], which includes
applications to homological integration theory and the calculus of vari-
ations, was published in 1969, and Rogers’ Hausdorff Measures in 1970.
Thus 1970 was a time for taking stock of the progress that had been made
with Hausdorff measures and geometric measure theory.

‘Hausdorff Measures’

The three chapters of ‘Hausdorff Measures’ differ widely in character.
Chapter 1 gives an excellent account of basic measure theory, adopt-
ing the approach of Carathéodory in assigning an (outer) measure to all
subsets, leading to a o-field of measurable sets. The Method I construc-
tion then yields a wide class of measures on general sets. Specialising to
measures on topological spaces and then to measures on metric spaces
permits the subtle interplay between metric and measure-theoretic prop-
erties which is crucial to the geometry of Hausdorff measures. In particu-
lar, Method II of constructing measures on metric spaces leads to ‘metric
measures’ with good topological properties, including measurability of
Borel and Souslin sets.

The substantial Chapter 2 contains much technical and original ma-
terial. Hausdorfl measures are defined at the outset as a special case of
a Method II construction, and many properties follow immediately from
Chapter 1. Even if a set has Hausdorff dimension s, its s-dimensional
Hausdorff measure may well be infinite or zero, and many interesting
results in Chapter 2 relate to this situation. Several theoretical tools
are presented, including comparable net measures (which are equivalent
to Hausdorff measures but often more manageable) and the increasing
sets lemma. The chapter culminates with Theorems 56 and 57 which
generalise the work of Besicovitch (1952): under very general conditions,
Borel and Souslin sets of positive (perhaps infinite) Hausdorff measure
have compact subsets of positive finite measure. For a measure to be a
useful tool, it is generally necessary to work within a set that has positive
finite measure, and these theorems provide sets that one can ‘get one’s
hands on’ in problems involving measure and dimension.

Chapter 3 surveys applications in which Hausdorfl measures and di-
mensions play a major part. The author was very perceptive in his se-
lection: almost all the topics have continued to be active research areas.
Two very different applications are presented in greater detail. A concise
introduction to continued fractions leads to a dimensional analysis of the
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set of numbers with all partial quotients 1 or 2. Then classes of con-
tinuous increasing functions are represented as integrals with respect to
Hausdorff measures, analogously to Lebesgue’s theory of differentiation
of absolutely continuous functions. The wide variety of topics in this
chapter emphasises the scope of Hausdorff measures. Although there
have been many advances since the book was written, some of which
are outlined below, the chapter remains an invaluable guide to the basic
literature.

§2 Recent general developments

Several developments in the years since the publication of ‘Hausdorff
Measures’ have affected the direction and context of the subject.

The advent of fractals

The area received an enormous boost in the late 1970s from two quar-
ters. Mandelbrot’s book Les Objects fractals: forme, hasard et dimen-
ston [Man2] appeared in 1975 followed by substantially rewritten and ex-
panded versions Fractals: Form, Chance and Dimension [Man3] in 1977
and The Fractal Geometry of Nature [Man4] in 1982. Mandelbrot’s thesis
was that ‘fractals’, as he named highly irregular sets, are the rule rather
than the exception both in mathematics and in nature, with the concept
of ‘fractal (Hausdorff) dimension’ central to their study. The scope of
these ideas gave a tremendous impetus to mathematicians and scientists
to look again at mathematical and natural objects which had hitherto
been dismissed by many as too irregular for fruitful study.

At about the same time, computer technology had advanced suffi-
ciently to allow a wide variety of fractals to be drawn easily and accu-
rately. In particular, self-similar fractals, obtained by repeated substi-
tution of a figure within itself, and Julia sets, that is certain sets which
are invariant under transformations of the complex plane, attracted re-
newed attention from mathematicians as well as from those who enjoyed
computer experiment. As a natural tool for studying the mathematics
and geometry of fractals, Hausdorff dimensions and measures attracted
new interest, with several results which had been known fifty years earlier
rediscovered as ‘new’.

Iterated function systems

In 1981 Hutchinson [Hut] unified many fractal constructions by observing
that, given contractions Si,...,S, on a complete metric space, there
exists a unique non-empty compact set E satisfying

E= US,(E), (2)

=1
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this follows by applying Banach’s contraction mapping theorem in an
appropriate setting. Such a family of contractions is known as an iterated
function system (IFS) with E the attractor or invariant set.

An IFS imposes a natural net structure on its attractor E (see Chapter
2, §7) with net N = {S;, 0---0 5;,(E) : 1 < i; < m}. The net measure
constructed by Method II from the pre-measure 7 on N given by 7(S;, o
---05;, (F)) = diam(S;,0- - -05;, (E))* is often equivalent to s-dimensional
Hausdorff measure.

When each S; is a similarity transformation of ratio r; and the union
in (2) is ‘nearly disjoint’ (with an ‘open set condition’ satisfied) E is
called a self-similar set and has Hausdorff dimension equal to the value
of s satisfying

dor=1 (3)

=1

with 0 < pP(E) < co. (Dimension formulae of this form were already
known to hold for a variety of sets, see Moran (1946).) IFSs provide a
succinct representation for large classes of sets which naturally support
Hausdorff measures. ‘Classical’ fractals such as the middle-third Cantor
set, the von Koch curve and the Sierpiniski triangle fit into this framework.

The IFS approach has been extended to graph-directed systems [MW],
systems with infinitely many contractions [MU] and families of random
mappings [Fal2, Gra].

The realisation that apparantly complicated sets might be represented
succinctly by a small number of contractions led to intensive research on
‘fractal image compression’ with the objective of coding pictures by small
data sets to permit fast telephone transmission [Fis, BH].

The thermodynamic formalism

A deep insight of Sinai [Sin], Bowen [Bow] and Ruelle [Ruel] was that
techniques from statistical mechanics could be used to study invariant
sets of IFSs and dynamical systems involving non-linear mappings. In
particular, this can give a non-linear version of the dimension formula
(3) along with a natural measure equivalent to Hausdorfl measure on
the invariant set. For a very simple instance, let S; : [0,1] — [0,1] (i =
1,...,m) be twice differentiable mappings with 0 < ¢; < |Si(z)| < ez < 1
for all 2 € [0,1], such that the intervals S;[0, 1] are pairwise disjoint. Let
f U=, Si{0,1] — [0,1] be the ‘inverse’ function defined by f(z) =
S71(z) for x € S;[0,1]. Then the attractor E of the IFS {Si,...,Sm} is
also invariant for the expanding mapping f, in the sense that f(E) = E.
Let I denote the set of k-term sequences I} = {(¢1,...,ix) 1 <4 <
m}. In estimating the Hausdorfl measure of E it is natural to consider
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the sums over net intervals

Yi =D _(diam(S;, o+ 0 8, [0,1]))°, (4)

I;

a sum corresponding to the thermodynamic ‘partition function’. It may
be shown that the limit ¢* = limg_.o %log Z; exists, and the value of s
such that ¥* = 0 equals the Hausdorff dimension of E. (In the case where
the S; are similarities of ratios r;, this essentially means that (3_i—, rf)f
remains bounded away from 0 and oo as k — oo, which is equivalent to
(3).) In fact ¥* = P(—slog|f’|) = 0 where P is the pressure functional
defined on functions on E with the parameter s analogous to inverse
temperature. The Gibbs measure, which occurs naturally in the thermo-
dynamic setting, turns out to be equivalent to s-dimensional Hausdorff
measure on E, so 0 < p”*(E) < co. Moreover, this is an equilibrium mea-
sure that maximises an entropy expression over all invariant probability
measures. See [Bar, Bow, Fal6, Ruel, Rue2] for further details.

There are many other classes of IFSs and dynamical systems for which
the thermodynamic formalism relates naturally to Hausdorff measures,
see below.

Packing measures and dimensions

Another signal development in the early 1980s was the introduction of
packing measures and packing dimensions in various forms [ST, Sul, Tril,
TT]. Packing measures are in many ways dual to Hausdorff measures
which may be thought of as ‘covering’ measures. For £ € R”, h € H and
6> 0let

7 (E) = sup Z h(diam(B;))

where the supremum is over all ‘6-packings’ of E, that is collections of
disjoint balls {B;} of radii at most § with centres in E. The limit

wb(E) = lim 7} (E)

exists, but unfortunately is not in general a Borel measure. However,
applying Method II by defining

mf{Zwo ECUE}

yeilds a metric measure, known as packing measure. The packing dime-
sion, DImFE, of a set E is defined analogously to Hausdorff dimension,
as the infimum value of s such that 7*¢(E) < oo, where hy(t) = t*, see
[Fal4, Mat] for further details.
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Many Hausdorff measure properties have packing analogues, and now-
adays corresponding Hausdorff and packing results are presented along-
side each other. For example, for Borel sets E and F there are symmet-
rical inequalities for dimensions of products:

dimE + dimF < dim(E x F) < Dim(E x F) < DimE + DimF.

It is perhaps surprising that 60 years elapsed between the introduction of
Hausdorff measures and packing measures, even given the extra ‘Method
I’ step required in the definition.

Hausdorff-like measures

There are many variants of Hausdorfl measure which retain most of the
properties of Hausdorfl measures discussed in this book. For instance,
measures may be constructed by Method II from a pre-measure 7 on
a class of sets C (see Theorem 15) where 7(C") depends on geometrical
properties of C other than its diameter. This is the case with Rogers’ di-
mension print measures on subsets of R": here (a1, @s,... ,a,) is a given
non-negative vector and coverings are by rectangular parallelepipeds C
with h(C) = If*152 ... 18", where l1,l,,... I, are the edge lengths of C
in non-increasing order, see [Rog2] and Appendix A. Similarly, a mea-
sure constructed using coverings from a net of parallelepipeds is the nat-
ural one for work on self-affine sets (that is attractors of IFSs where
the mappings S; in (2) are affine transformations) [Fal3, McM1]. Other
Hausdorff-like measures occur in multifractal theory, see below.

Subsets of finite measure

The fact that a Borel or Souslin set of positive (possibly infinite) Haus-
dorff measure has a compact subset of positive finite measure, is funda-
mental in the theory and in many applications of Hausdorff measures.
This is rightly given prominence in Chapter 2 of this book, where the
intricate proofs use comparable net measures and the ‘increasing sets
lemma’. Recently, a completely different approach was introduced by
Howroyd [How, Mat] using weighted Hausdorff measures to enable the
use of powerful techniques from functional analysis, such as the Hahn-
Banach and Krein—Milman theorems.

Frostman’s lemma is closely related. Indeed (1) follows easily from
the existence of compact subsets of finite positive measure together with
the fact that, for an s-set E, the upper density limsup,_ o(u"* (B(z,r) N
E)/(2r)*) < 1 for phs-almost all z € E (which comes from a routine
application of the Vitali covering lemma). Not surprisingly, analogous
results hold for packing measures: subsets of positive finite packing mea-
sure exist under very general conditions [JP]. There is a packing ana-
logue of Frostman’s lemma, as well as ‘anti-Frostman’ lemmas (with the

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521624916
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-62491-6 - Hausdorff Measures
C. A. Rogers

Frontmatter

More information

xiv FOREWORD

inequalities reversed) for both Hausdorff and packing dimensions, which
all go to emphasise the duality of these notions [Cut2, Fal6].

The many applications where one requires a positive finite measure
on a given set include the relationships between measures and dimensions
of sets £, F' and their product F x F, see [How, Mat], and formulae for
the dimension of self-affine sets [Fal3].

§3 Recent applications of Hausdorff measures

Professor Rogers claimed that his Chapter 3 ‘Applications of Hausdorff
measures’ was ‘very inadequate (like a half-hour visit to the British Mu-
seum)’. By the same yardstick, this section takes a few minutes to glance
at highlights in a museum that has become greatly enlarged and enriched
over the past 30 years, though perhaps ‘museum’ is not quite the right
word for an area that remains active and exciting.

Geometrical properties

The programme initiated by Besicovitch’s work in 1928 on the geomet-
ric structure of 1-sets in the plane still continues, with densities, tan-
gency and rectifiability properties and orthogonal projections studied in-
tensively.

Recall that a set E' € R” is m-rectifiable if it is made up of countably
many pieces which are Lipschitz images of R™, formally if there exist
Lipschitz f; : R™ — R" such that p*=(E\|J;2, fi(R™)) = 0. A (Radon)
measure p on R is m-rectifiable if there is an m-rectifiable Borel set E
such that p*=(R*\E) = 0 and pu is absolutely continuous with respect
to uhm. Work on the relationships between densities and rectifiability of
sets and measures culminated in Preiss’ proof [Pre| that if the density
lim, _o(p(B(z,7))/r™) of a measure p on R™ exists and is positive and
finite for p-almost all ¢ then m is an integer and u is m-rectifiable. In
particular, a Borel set E with u"=(E) < co is m-rectifiable if and only if
lim,_o(p"™ (B(z,r)NE)/(2r)™) exists for u*=-almost all z € E, in which
case the density equals 1. Furthermore there is a number 0 < ¢(m) < 1
such that if liminf,_o(p"=(B(x,7) N E)/(2r)™) > ¢(m) for p"m-almost
all z € F then E is m-rectifiable. Finding the least possible value of
¢(1) is an old and intriguing problem: Besicovitch (1928) showed that
1-10~%576 would do, and he later improved this to 2 (Besicovitch (1938)),
conjecturing that % was least possible. To date the best value that has.
been established is £;(2 + /46) ~ 0.732 [PT).

There is also a nice packing measure characterisation: if £ C R” with
0 < 7h¢(E) < o, then x+(E) = pP+(E) if and only if s is an integer and
the restriction of 7+ to E is rectifiable, see [Mat, ST]

Tangent measures have become a major tool in this area. As limits of
scaled enlargements of a measure p about a point, the tangent measures
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of a measure u retain certain features of 4 but behave in a more regular
and tractable way. More precisely, for a € R” and » > 0, let T, , denote
the transformation that maps a measure u to that given by (T »p)(4) =
p(rA + a). A non-zero measure v is a tangent measure of p at a if there
are positive sequences (r;) — 0 and (¢;) such that ¢;T, . — v in the
vague topology.

Tangent measures may be used to relate local features of a measure to
global properties such as integral dimensionality and rectifiability. Preiss’
rectifiability proof makes powerful use of tangent measures to reduce
density properties to more manageable questions on the structure of m-
uniform measures, that is measures v such that v(B(z,r)) = cr® for all
r > 0 and all z in spty.

Tangent measures have been used to show that integral dimensionality
and rectifiability follow from even weaker conditions, for example from
conditions involving average densities such as

T he -t
liminf & [ A (B@eT)

dt
T—co T Jo (2¢77)° ’

see [MoP).

Harmonic analysis

Hausdorff measures and geometric measure theory have impacted on har-
monic analysis in a variety of ways. In 1919 Besicovitch [Bes] constructed
a ‘Kakeya’ set, that is a set £ C R? of zero plane Lebesgue measure which
contains a straight line in every direction, and he later noted (Besicovitch
(1964b)) that such sets could be realised by dualising projection proper-
ties of Hausdorff measures. The existence of a Kakeya set easily implies
that there can be no inequality of the form

JUFlpds <cil £l

for functions f : R? — R, where Fy(t) = [, fdl is the integral of f along
{, the line in direction # and distance ¢t from the origin. In the same
vein, much delicate work has been done on maximal functions defined
over lower-dimensional manifolds. For example, it is natural to compare
f : R? — R with the ‘circular maximal function’ F obtained by setting
F(z) equal to the maximum absolute value of the averages of f over all
circles with centre z, see [Ste] for an account of this area which has a
strong geometrical flavour.

Recently, tangent measures have been used very effectively to relate
the existence of singular integrals to rectifiability. For instance, for rea-
sonable measures g on R”, if the principal value integral

lim ly — z|™* "y - )dp(y)
=0 Jly—zl>e
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exists p-almost everywhere, then s is an integer and u is s-rectifiable, see
[Mat, MP].

Dimension calculations

Calculating Hausdorff dimensions of specific sets has become something
of an industry, with the primary concept of Hausdorff measure often
played down. (Is ‘A piece of string is one-dimensional’ a satisfactory
answer to an enquiry about the size of a piece of string?) Nevertheless,
a frequent aim is to find h € H with 0 < pP(E) < oo if such exists,
even if good bounds for u*(E) are too difficult to obtain or unimportant.
Formulae and estimates for dimensions and measures have been found
for many classes of sets, particularly those that arise as attractors of
IFSs (2) where the contractions are of special types. These include self-
similar sets (3), self-affine sets [Fal3, McM1], self-conformal sets [Rue2]
and statistically self-similar sets [Fal2, GMW]. For references to many
other dimension calculations see [Fal4, Fal6, Mat].

Sets defined by number-theoretic properties

Certain sets of numbers defined by conditions on their base d digits have
obvious IFS representations. For example, the set of numbers in [0,1]
whose decimal digits are all even is the attractor of an IFS consisting
of five similarities of ratio {5 and hence by (3) has Hausdorff dimen-
sion log5/log 10 and positive finite Hausdorff measure. On the other
hand, the set E of numbers in [0, 1], which when written to base d has
a proportion p; > 0 of its digits equal to j (in a limiting sense) for all
j=0,1,...,d -1, is dense in [0,1]. By concentrating a measure on
E in a natural way and examining densities, F has Hausdorff dimen-
sion s = —(logd)~! 27;3 p; log p;, however in this case p*+(E) is not in
general positive and finite, see [Bil, Fal4].

The continued fraction sets of Chapter 3, §2 fit naturally in the IFS
framework. The set E of numbers in [0,1] with all continued fraction
quotients equal to 1 or 2 is the attractor of the IFS consisting of the
two (non-linear) contractions Si(z) = 1 + 1/ and Si(z) = 2+ 1/, see
[Fal4]. Jarnik’s calculation, that $ <dimF < %, has been superseded
by methods that enable the dimension to be computed as accurately
as desired, with dimE = 0.5312805062772051416 a recent estimate, see
[Hen] where dimensions of other sets determined by continued fraction
quotients are also listed.

Hausdorff dimension has played a major réle in the metrical theory
of Diophantine approximation. A classical theorem of Jarnik states that,
for a > 2, the set of a-well-approximable numbers has Hausdorff dimen-
sion 2/a. (A number z is a-well-approzimable if there are infinitely many
positive integers ¢ such that |z — sl < q% for some integer p.) There have
been many dimension calculations which generalise this. For example,
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the dimension of the set of points in R™ for which the coordinates are
simultaneously a-well-approximable (with the same denominator occur-
ring in approximations to all coordinates) has been calculated [DRV2],

as has the dimension of well-approximable subsets of smooth manifolds
[DRV1].

Brownian motion
Dimension and measure properties of Brownian motion are discussed
in Chapter 3, §1 and this is another active area. Whilst the sample
path B of Brownian motion in R” (n > 2) has Hausdorff dimension 2,
this is an instance where the ‘correct’ dimension function h € H in-
volves a logarithmic term: with probability one, 0 < p*(B) < co where
h(t) = t%log(t~!)logloglog(t~!) if n = 2 and h(t) = t?loglog(¢t~1) if
n = 3,4,.... Calculations have been extended to Brownian functions
from R™ to R™, to fractional Brownian motion (where the distance in-
crements over time intervals ¢ have variance ¢2* for 0 < o < 1) and to
general stable processes. Results on double points and multiple points
of sample paths of these processes may be deduced from general proper-
ties of dimensions of intersections of sets in general position, see [Fal4,
Kah]. Studies have been made of the dimensions of zero sets and level
sets of processes, of ‘slow points’ and ‘fast points’, and of the images of
given sets under such processes. Particularly important is the identifica-
tion of local times of Brownian and other processes with an appropriate
Hausdorff measure. There are packing measure analogues: in contrast to
Hausdorff measure, the dimension function h(t) = t2/loglog(t~!) is the
one that assigns positive finite packing measure to Brownian paths in R?
for n = 3,4,... [TT]. For surveys of this vast subject area see [Adl, Kah,
Tay].

Two random sets B and E are intersection equivalent in a bounded
region U if for every closed set K C U,

P(KNB#0)
“>PENEZ0)

where P denotes probability and a, b are positive constants independent
of K. Let E,(p) be the statistically self-similar set obtained from the unit
cube in R” by repeated subdivision of cubes into 2" subcubes, with each
subcube independently retained with probability p. Then the Brownian
sample path B in R™ (n > 3) is intersection equivalent to E,(227"), see
{Per]. This remarkable correspondence is a consequence of connections
between Brownian motion, potential theory and branching processes. It
enables results, for example on dimensions and on multiple points of
Brownian paths, to be deduced easily from straightforward properties
of E,(p). There are similar intersection equivalences for other stable
processes.

<o,
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Local dimensions and multifractal theory
For p a Borel regular measure on R® with 0 < u(R™) < oo, the (lower)
local or pointwise dimension of p at z is defined by

log u(B(z, 7))

_d_l_n_lloc/‘t(m) = llil’_l}(l)lf lOgT‘

For certain ‘rich’ measures p the sets
EOI = {:l) :-———dimloc“(x) = a}

may be ‘large’ for a range of a. There are two natural ways in which to
quantify E,: using the original measure p and by its Hausdorff dimension.
The former approach was adopted by Rogers and Taylor (1959, 1962)
who, roughly speaking, decomposed p into component measures with
local dimension «, over a range of a. More recent treatments are given
in [Cutl, KK].

The second approach considers the dimension dimE,, which may be
significant even if u(E,) = 0. This is the basis of multifractal theory,
an area of intense activity since the mid-1980s. The multifractal concept
may be traced back to Mandelbrot’s work on turbulence [Manl] in 1974
in which he suggested that dissipation of energy in a turbulent fluid
is concentrated on a fractal, with different moments scaling at different
rates, an idea that was developed in the physics literature, see for example
[FP, HIKPS, HP]. A basic aim is to find the multifractal spectrum or
singularity spectrum dimE, of a measure g, which may be non-zero over
a range of a.

Many natural questions about multifractals parallel those about frac-
tals. Spectra have been calculated in specific instances, such as for
‘self-similar’ measures [CM] and ‘self-affine’ measures [Kin]. Geometrical
properties of multifractals, for example concerning projections [HK] and
products [Ols2], have also been investigated. It is not surprising that,
just as Hausdorff measures are used in the analysis of fractal sets, so
Hausdorff-like measures have been invoked to study multifractals [BMP,
Ols1, Pes]. Very roughly, for q,8 € R, setting h(G) = pu(G)?diam(G)?
in Definition 16 of Chapter 2 leads to a Hausdorff-like measure p%# (not
strictly a Hausdorff measure since h(G) does not depend solely on the
diameter of G). Analogously to Hausdorff dimension, for each ¢ let 3(q)
be the infimum value of 8 for which p%#(spt(x)) is finite. For many
measures, for example self-similar measures or statistically self-similar
measures, the multifractal formalism applies: the multifractal spectrum
is the Legendre transform of (g}, that is

dimEy = __inf _{6(q) + aq}.
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For fuller accounts see [EM, Fal6, O11].

A parallel theory of ‘multifractal analysis of functions’ quantifies sets
where the local Holder exponent of a function takes given values, see

[Jaf].

Dynamical systems

Dynamical systems have been researched intensively over the past 30
years, with computer experiment again a motivating influence. A (dis-
crete) dynamical system is essentially a map f : D — D (where the
domain D is often a subset of R"), with the k-th iterate f¥(z) thought
of as the position at time k of a particle initially at z. A set E C D is an
attractor of f if E is a closed invariant subset of D (so f(E) = E) such
that dist(f*(z), E) — 0 as k — oo for all initial £ in some open basin
of attraction containing E. Similarly, an invariant set E is a repeller if
points near £ move away under iteration. Even very simple systems can
have fractal attractors or repellers, often supporting a Hausdorff measure
as a natural invariant measure.

The set E is hyperbolic for the map f (which we take to be twice
differentiable) if, very roughly, the absolute values of the eigenvalues of
the derivative of f on E are bounded away from 1, so that f/(x) splits into
an expanding and a contracting part. Then E has a Markov partition,
that is a decomposition into a finite number of components on which the
branches of the inverse f~! behave very like a (graph-directed) IFS, see
[KH]. This is a situation where the thermodynamic formalism may be
applied, often leading to a ‘pressure formula’ for the dimension of £ and
with Hausdorfl measures arising naturally as Gibbs measures. Dynamical
systems that have been analysed in this way include expanding conformal
mappings [Bow, Rue2], cylinder maps [Bed], general expanding mappings
[Fal5], and hyperbolic mappings with both expanding and contracting
directions [MM].

The dynamics of conformal mappings on C remains a prolific research
area. Although Fatou [Fat] and Julia [Jul] developed a substantial theory
of the dynamics of polynomial mappings f : C — C in 1918, it was not
until relatively recently that it was realised that the repellers or ‘Julia
sets’ that arise are in general fractals. In particular, the dynamics of the
quadratic mappings f.(z) = 2% +c and the structure of the Julia set vary
dramatically according to the location of ¢ relative to the Mandelbrot set
M (the set of ¢ for which f. has a connected Julia set, equivalently those ¢
such that f¥(0) 4 o). For ¢ outside M and for ¢ in many interior regions
of M, the mapping f. is hyperbolic, making the dynamics tractable and
permitting the thermodynamic formalism. However, for certain ¢ on the
boundary of M there are still unanswered questions, see [Dev, McM2] for
further details.
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Fuchsian and Kleinian groups

Two-dimensional hyperbolic space may be represented by the open unit
disc D in C with appropriately defined hyperbolic metric d. The confor-
mal isometries with respect to d are the Mobius transformations g(z) =
(az +©)/(cz + @) where a,c € C satisfy |a|? — |¢|> = 1. A group G of
Mobius transformations on D is called a Fuchsian group if it acts dis-
continuously on D, that is for every compact K C D the intersection
¢(K) N K is non-empty for only finitely many ¢ € G. The limit set L
of G consists of the points ¢ on the boundary of D for which there is a
sequence g, € G with g,(0) — ¢. If G is cyclic or is an extension of a
cyclic group by an order 2 element then L contains at most two points.
However, for other Fuchsian groups L has a fractal structure.

The limit set L carries a natural and very useful measure. The in-
fimum of s for which the Powcaré series S(s) = 3 ¢ €799 con-
verges is termed the critical exponent sq. Very roughly, the Patterson
measure p is the measure on L given by the weak limit as s\ sg of the
normalised measures

ps = S(s)7H Y et 4606, o,
9€G

where 6, denotes the unit point mass at z. (Provided S(so) diverges it is
not difficult to see that the limit exists and is supported by L; otherwise
it is necessary to introduce weightings in the limiting process.)

The Patterson measure has many nice invariance properties and is
the natural measure with which to study the limit set. For wide classes
of groups G the critical exponent sy equals the Hausdorff dimension of
L, and often p turns out to be equivalent to so-dimensional Hausdorff
and/or packing measure on L (in some instances Hausdorff and packing
measures restricted to L are not equivalent), see [Sul].

An analogous theory goes through for Kleinian groups, that is groups
of isometries on higher-dimensional hyperbolic spaces.

Manifolds of constant negative curvature arise as quotients of hyper-
bolic space by Kleinian groups, and geodesics on such manifolds may be
identified with pairs of points on the boundary of D. Patterson mea-
sures, and hence geometric measures, are central in studying dynamics
on these manifolds and lead to estimates for the dimensions of certain

sets of geodesics corresponding to points in the limit set, see [Bea, Nic,
Pat].

Differential equations

Some very interesting recent developments concern differential equations.
Hausdorff measures are defined on general metric spaces (see Chapter

2), so there is no problem in working with measures and dimensions of
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sets in infinite-dimensional normed spaces, such as spaces of functions.
This is an appropriate setting for studying certain differential equations,
for instance the reaction—diffusion equation

%1:' = V?u +p(u)

for an appropriate non-linear function p. Consider the evolution of so-
lutions u(z,t) with time ¢ > 0 where z € D for some spatial domain
D. The solution u(.,t) at time ¢ may be regarded as a point in some
normed subspace X of the space of continuous functions on D, with
u(.,t) = fi(u(.,0)), where the evolution operator f; maps the initial con-
dition u(.,0) to the solution at time t. The attractor of the differential
equation may be defined as the maximal compact set E of functions in
X that is invariant under f; (so f;(E) = E) for all ¢ > 0 such that the
dist(fe(u(.,0)), E) — 0 as t — oo for all initial u(.,0) € X. Careful esti-
mates lead to upper bounds for the Hausdorff dimension of the attractor
in terms of parameters of the equation. This attractor in function space
represents the permanent regime that can be observed when the system
starts from any initial conditions. Its Hausdorff dimension indicates the
complexity of the flow and may be thought of as the number of degrees
of freedom of the system.

This type of analysis has been applied to a wide variety of differ-
ential equations, such as the Navier-Stokes equation, pattern formation
equations and non-linear Schrodinger equations, see [Lad, Tem].

Various familiar differential equations have been studied in a ‘fractal
setting’. For example, the dominant term of the asymptotic distribution
of the eigenvalues of the Laplacian on an open domain D depends on the
area or volume of the domain, but the second-order term often reflects
the fractality of the boundary of D [Lap]. Similarly, for the heat equation
on a region where the boundary is held at a fixed temperature, the rate of
heat loss across the boundary is related to a dimension of the boundary
[Ber, FLV].

There is considerable interest in problems where the domain itself
is fractal, for example modelling heat diffusion on a Sierpinski triangle.
A major difficulty is how to define operators such as the Laplacian in
this context; the usual approach is as a limit of difference operators on
discrete graphs which approximate the domain, see [BP, Kig].

§4 Further reading

There are several accounts of Hausdorff measures and geometric measure
theory which provide further details of the areas sketched above as well
as of related topics. These include the books by Edgar [Edgl], Falconer
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[Fall] and Mattila [Mat], and Wicks [Wic] whose approach uses non-
standard analysis. The books by Barnsley [Barn], Falconer [Fal4,Fal6]
and Peitgen, Jirgens and Saupe [PJS] are more concerned with analysis
of dimensions and fractals, Massopust [Mas] concentrates on functions
and surfaces, and Tricot [Tri2] on curves. The anthology by Edgar [Edg2]
provides an interesting historical pespective. The conference proceedings
[BD, BGZ, BKS] also contain many relevant articles.

Pertinent areas which have not been touched on here include harmonic
measures on fractals [JM], wavelet methods [Hol], other definitions of di-

mension [Fal4, Man4], minimal surfaces [Mor], and geometric integration
theory [HN].

St Andrews, November 1997
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PREFACE

Measures are of importance in mathematics in two rather different
ways. Measures can be used for estimating the size of sets, and
measures can be used to define integrals. E. Borel in his 1894 thesis
(see Borel 1895 or 1940)t essentially introduced the Lebesgue outer
measure as a means of estimating the size of certain sets, so that he
could construct certain pathological functions. Lebesgue (1904) on
the other hand was mainly interested in his measures as a tool
enabling him to construct his integral. While both aspects of measure
theory are important, the emphasis in this book will be almost
entirely on the first; we only mention the theory of integration in the
last section of the last chapter.

The first ‘Hausdorff’ measure was introduced by C. Carathéodory
(1914), in a paper in which he also introduced the much more general
Carathéodory outer measures. Carathéodory developed the theory of
linear measure in n-dimensional Euclidean space and in a final para-
graph clearly showed how p-dimensional measure could be introduced
in g¢-dimensional space, for p = 1,2, ...,q. The p-dimensional
measures, for general positive real p, were introduced by F. Haus-
dorff (1919); he also illustrated the use of these measures by showing
that the Cantor ternary set has in a certain sense the fractional di-
mension. log 2/log 3 = 0-6309 .... The theory of Hausdorff measures
has developed very greatly since 1919, very largely as a result of the
work of A. 8. Besicovitch and his students.

This book cannot contain an account of more than a tiny fraction
of the work that has been done on Hausdorff measures. After a first
chapter giving an introduction to measure theory with special
attention to the study of non-o-finite measures, the second chapter
develops the most general aspects of the theory of Hausdorff mea-
sures, and the final chapter gives an account of the applications of
Hausdorff measures, a general survey being followed by detailed
accounts of two rather special topics.

Much of this book is based on postgraduate lectures given at the
University of British Columbia and at University College London.
I am conscious that I have been considerably influenced by close and
enjoyable contacts with Maurice Sion, when I visited the University

1 Such references are to the bibliography, p. 169.
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XXX PREFACE

of British Columbia, and with Roy O. Davies, when he visited Uni-
versity College London. Indeed I must hasten to acknowledge that
much of §7 of Chapter 2 is the result of joint work with Dr Davies,
and that I am most grateful to him for permission to publish it first
in this work. Dr Davies has also helped me by careful criticism of
Chapter 1. As the book is largely based on lectures, and, as I like my
students to follow my lectures, proofs are given in great detail;
this may bore the mature mathematician, but it will I believe be a
great help to anyone trying to learn the subject ab initio.

C. A. ROGERS
November, 1969

I am most grateful to the Cambridge University Press for the
care they have taken in the production of this book, and to Miss
S. Burrough for the assistance she has given with the proof-reading.

C.A.R.
July, 1970

Note on the second edition. 1 am most grateful to the Cambridge
University Press for the care and skill they have used in making many
small corrections, a few larger ones, a number of minor additions at
the chapter ends and, of course adding the Appendix. I am also most
grateful to Professor K. J. Falconer for adding a Foreword giving an
outline of the many ways in which the subject extends far beyond the
scope of this book. This will be most useful in giving readers references
where they can start to explore the developments that interest them.

C. A R.
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