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The Gamma and Beta Functions

Euler discovered the gamma function, I"(x), when he extended the domain of the
factorial function. Thus I"'(x) is a meromorphic function equal to (x — 1)! when x
is a positive integer. The gamma function has several representations, but the two
most important, found by Euler, represent it as an infinite integral and as a limit of
a finite product. We take the second as the definition.

Instead of viewing the beta function as a function, it is more illuminating to think
of it as a class of integrals — integrals that can be evaluated in terms of gamma
functions. We therefore often refer to beta functions as beta integrals.

In this chapter, we develop some elementary properties of the beta and gamma
functions. We give more than one proof for some results. Often, one proof gener-
alizes and others do not. We briefly discuss the finite field analogs of the gamma
and beta functions. These are called Gauss and Jacobi sums and are important in
number theory. We show how they can be used to prove Fermat’s theorem that a
prime of the form 4n + 1 is expressible as a sum of two squares. We also treat a
simple multidimensional extension of a beta integral, due to Dirichlet, from which
the volume of an n-dimensional ellipsoid can be deduced.

We present an elementary derivation of Stirling’s asymptotic formula for n! but
give a complex analytic proof of Eunler’s beautiful reflection formula. However, two
real analytic proofs due to Dedekind and Herglotz are included in the exercises. The
reflection formula serves to connect the gamma function with the trigonometric
functions. The gamma function has simple poles at zero and at the negative inte-
gers, whereas csc x has poles at all the integers. The partial fraction expansions
of the logarithmic derivatives of I'(x) motivate us to consider the Hurwitz and
Riemann zeta functions. The latter function is of fundamental importance in the
theory of distribution of primes. We have included a short discussion of the func-
tional equation satisfied by the Riemann zeta function since it involves the gamma
function.

In this chapter we also present Kummer’s proof of his result on the Fourier
expansion of log I'(x). This formula is useful in number theory. The proof given
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2 1 The Gamma and Beta Functions

uses Dirichlet’s integral representations of log I'(x) and its derivative. Thus, we
have included these results of Dirichlet and the related theorems of Gauss.

1.1 The Gamma and Beta Integrals and Functions

The problem of finding a function of a continuous variable x that equals n! when
X = n, an integer, was investigated by Euler in the late 1720s. This problem was
apparently suggested by Daniel Bernoulli and Goldbach. Its solution is contained
in Euler’s letter of October 13, 1729, to Goldbach. See Fuss [1843, pp. 1-18]. To
arrive at Euler’s generalization of the factorial, suppose that x > 0 and n > 0 are
integers. Write

_ x+m!

xl=—, 1.1.1
(x+ 1), ( )
where (a), denotes the shifted factorial defined by
@p=a@a+1)---(a+n—1) forn>0,(a)=1, (1.12)
and a is any real or complex number. Rewrite (1.1.1) as
| nl(n+ 1), nln* (n+ D
x!= = . .
(x + Dy (x+ Dy n*
Since
1
lim m =1,
n—oo n*
we conclude that
1nX
Xl = lim — (1.13)

im ———.
nc0 (x + 1,
Observe that, as long as x is a complex number not equal to a negative integer, the
limit in (1.1.3) exists, for

= () 103 ()
c+1, \n+1) 11 j J

j=

*\ 7! 1\* x(x = 1) (1)
1+ - l+-) =1+——5—+0| 3|
( J) ( J) 2j2 7

and
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1.1 The Gamma and Beta Integrals and Functions 3

Therefore, the infinite product

o0 X -1 1 x

Mtr+= 1+~

ey J J

converges and the limit (1.1.3) exists. (Readers who are unfamiliar with infinite

products should consult Appendix A.) Thus we have a function

X
IM(x) = lim -
k—oo (x + 1)

defined for all complex x # —1, —2, -3, ... and I1(n) = n!.

(1.1.4)

Definition 1.1.1 For all complex numbers x # 0, —1, =2, ..., the gamma func-
tion T'(x) is defined by

1px—1
'x) =kli)r101o o (1.1.5)
An immediate consequence of Definition 1.1.1 is
Fix+ 1) =xI'(x). (1.1.6)
Also,
Fn+1)=n! (1.1.7)

follows immediately from the above argument or from iteration of (1.1.6) and use
of

r() = 1. (1.1.8)

From (1.1.5) it follows that the gamma function has poles at zero and the negative
integers, but 1/ T"(x) is an entire function with zeros at these points. Every entire
function has a product representation; the product representation of 1/I'(x) is
particularly nice.

Theorem 1.1.2

1 ad X
_ yx il —x/n
_F(x) =xe II{(I-}—n)e }, (1.19)

n=1

where y is Euler’s constant given by

"1
y = lim ( X —10gn>. (1.1.10)

n—oo
k=1
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4 1 The Gamma and Beta Functions

Proof.

Coxx+D---x+n—-1)
m
Mx) n-oo nlnc-1

= 11mx(1+£><1+i><1+ )e—-xlogn
n—oo 1 2

n
= 1 x(1+1+-+1-logn) A P
X I{(1+5)e

k=1

ce T (142,

n=1

S| =

The infinite product in (1.1.9) exists because

1+x —x/n 1+x | x+x2 | x2+0 1
Z e = z Iy =1 =1,
n n n  2n? 2n? n3

and the factor e~*/" was introduced to make this possible. The limit in (1.1.10)
exists because the other limits exist, or its existence can be shown directly. One
way to do this is to show that the difference between adjacent expressions under
the limit sign decay in a way similar to 1/n%. =

One may take (1.1.9) as a definition of I'(x) as Weierstrass did, though the
formula had been found earlier by Schiomilch and Newman. See Nielsen [1906,
p. 10].

Over seventy years before Euler, Wallis [1656] attempted to compute the integral
fol VIi—x%dx=1 f_+11(1 —x)2(14x)"2dx . Since this integral gives the area of
a quarter circle, Wallis’s aim was to obtain an expression for . The only integral
he could actually evaluate was fol xP(1 — x)qdx, where p and g are integers or
g = 0 and p is rational. He used the value of this integral and some audacious
guesswork to suggest that

n 1 1 2:4.6---2n L] 3 5

Z_ 1—x%dx =- 1 7w TN e)

4 /0\/—xx 4noco|[1-3-5--2n—1) «/ﬁ} <2> <2>
(1.1.11)

Of course, he did not write it as a limit or use the gamma function. Still, this
result may have led Euler to consider the relation between the gamma function
and integrals of the form fol xP(1 — x)qdx where p and g are not necessarily
integers.

Definition 1.1.3 The beta integral is defined for Rex > 0,Rey > 0 by

1
B(x,y) :/ F — 1) ldr. (1.1.12)
0
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1.1 The Gamma and Beta Integrals and Functions 5

One may also speak of the beta function B(x,y), which is obtained from the
integral by analytic continuation.

The integral (1.1.12) is symmetric in x and y as may be seen by the change of
variablesu =1 — .
Theorem 1.1.4

_TEr»

Bey =ty

(1.1.13)

Remark 1.1.1 The essential idea of the proof given below goes back to Euler
[1730, 1739] and consists of first setting up a functional relation for the beta
function and then iterating the relation. An integral representation for I'(x) is
obtained as a byproduct. The functional equation technique is useful for evaluating
certain integrals and infinite series; we shall see some of its power in subsequent
chapters.

Proof. The functional relation we need is
B(x,y) = ?B(x, y+ . (1.1.14)
First note that for Rex > 0andRe y > 0,
B(x,y+1) = /01 FN = — )Y de

= B(x,y)— B(x+1,y). (1.1.15)

However, integration by parts gives

1 ! !
{—t"(l—t)y} +X/ P =) de
X X Jo

0

Bx,y+ 1D

= %B(x—k 1, y). (1.1.16)

Combine (1.1.15) and (1.1.16) to get the functional relation (1.1.14). Other proofs
of (1.1.14) are given in problems at the end of this chapter. Now iterate (1.1.14) to
obtain

G pat+y+D

B(x,y) = B(x,y+2):...=(_’f_+y_)”

yy+1D (Mn
Rewrite this relation as

_(x+y)a nl ("1 =1 e\ ar
B“"”—T(‘yzfo (z> (l‘z> -

_ n nty—1
= Mn!ny : / tx~1 1 — i ’ dt.
==l (y), Jo n

B(x,y + n).
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6 1 The Gamma and Beta Functions

As n — oo, the integral tends to f;* r*~'e~'dt. This may be justified by the
Lebesgue dominated convergence theorem. Thus

R 60 Y
B(x,y)_—r(x+y)/0 leds. (1.1.17)

Sety = 1in (1.1.12) and (1.1.17) to get

1
1:/ 7 ldr = B(x, 1) = - / e dr.
X 0 F( +1)

Then (1.1.6) and (1.1.8) imply that fooo t*“le~tdt = I'(x) for Rex > 0. Now use
this in (1.1.17) to prove the theorem for Rex > 0 and Rey > 0. The analytic
continuation is immediate from the value of this integral, since the gamma function
can be analytically continued. H

Remark 1.1.2 Euler’s argument in [1739] for (1.1.13) used a recurrence relation
in x rather than in y. This leads to divergent infinite products and an integral that
is zero. He took two such integrals, with y and y = m, divided them, and argued
that the resulting “vanishing” integrals were the same. These canceled each other
when he took the quotient of the two integrals with y and y = m. The result was an
infinite product that converges and gives the correct answer. Euler’s extraordinary
intuition guided him to correct results, even when his arguments were as bold as
this one.

Earlier, in 1730, Euler had evaluated (1.1.13) by a different method. He expanded
(1 — ¢)?~!in a series and integrated term by term. When y = n + 1, he stated the
value of this sum in product form.

An important consequence of the proof is the following corollary:

Corollary 1.1.5 ForRex > 0

'(x) =/ Fle ds. (1.1.18)
0

The above integral for I"(x) is sometimes called the Eulerian integral of the
second kind. It is often taken as the definition of I'(x) for Re x > 0. The Eulerian
integral of the first kind is (1.1.12). Legendre introduced this notation. Legendre’s
["(x) is preferred over Gauss’s function IT(x) given by (1.1.4), because Theorem
1.1.4 does not have as nice a form in terms of IT1(x). For another reason, see Section
1.10.

The gamma function has poles at zero and at the negative integers. It is casy
to use the integral representation (1.1.18) to explicitly represent the poles and the
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1.1 The Gamma and Beta Integrals and Functions 7

analytic continuation of I"(x):

1 00
F(x)=/ t"“e"dt+/ le~tdr
0 1

>\ (=" o
= — 7 Fle dr. 1.1.19
= <n+x>n!+/1 ¢ (119

The second function on the right-hand side is an entire function, and the first shows
that the poles are as claimed, with (—1)"/n! being the residue at x = —n,n =
0,1,....

The beta integral has several useful forms that can be obtained by a change of
variables. For example, set t = s/(s + 1) in (1.1.12) to obtain the beta integral on

a half line,
F r
/ o) (1.1.20)
1+ S)"er T TGx+y)
Then again, take ¢ = sin’ 6 to get
/2 r r
/ sin”* 19 cos¥ ! 0do = M. (1.1.21)
0 2(x +y)

Put x = y = 1/2. The result is

ri)) _=
() 27
or
r(/2) = /x. (1.1.22)

Since this implies [I‘(%)]2 = /4, we have a proof of Wallis’s formula (1.1.11).
We also have the value of the normal integral

/ e dx =2/ e dx =/ ™27 dr =T(1/2) = /7. (1.1.23)
0 0

—00

Finally, the substitution t = (4 — a)/(b — a) in (1.1.12) gives

b
/(b—u)x_l(u—a)y_ldu=(b—a)x+y“1B(x,y):(b a) I—F(X)F(Y)

Fx+y)
(1.1.24)
The special case a = —1, b = 1 is worth noting as it is often used:
! r)r
/ (14011 =) lde = 25~ IM (1.1.25)
-1 Tx+y)
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8 1 The Gamma and Beta Functions

A useful representation of the analytically continued beta function is

B(x, y)

_TOro) @y (14 (1.126)

Tx+y)  xy 2
This follows immediately from Theorem 1.1.2. Observe that B(x, y) has poles at
x and y equal to zero or negative integers, and it is analytic elsewhere.

As mentioned before, the integral formula for I"(x) is often taken as the defini-
tion of the gamma function. One reason is that the gamma function very frequently
appears in this form. Moreover, the basic properties of the function can be devel-
oped easily from the integral. We have the powerful tools of integration by parts
and change of variables that can be applied to integrals. As an example, we give
another derivation of Theorem 1.1.4. This proof is also important because it can
be applied to obtain the finite field analog of Theorem 1.1.4. In that situation one
works with a finite sum instead of an integral.

Poisson [1823] and independently Jacobi [1834] had the idea of starting with
an appropriate double integral and evaluating it in two different ways. Thus, since
the integrals involved are absolutely convergent,

o0 x o0 o0
/ / e e gsdr = / tx_le_tdt/ 77 le™ds = T(x)T(y).
o Jo 0 0

Apply the change of variables s = uv and ¢+ = u(1 — v) to the double integral,
and observe that 0 < 4 < oo and 0 < v < 1 when 0 < s, ¢ < 00. This change
of variables is suggested by first setting s + ¢t = u. Computation of the Jacobian
gives dsdt = ududv and the double integral is transformed to

00 1
/ e‘"u"”_ldu/ vl =) v =T(x + y)B(x, y).
0 0
A comparison of two evaluations of the double integral gives the necessary result.
This is Jacobi’s proof. Poisson’s proof is similar except that he applies the change
of variables t = r and s = ur to the double integral. In this case the beta integral
obtained is on the interval (0, co) as in (1.1.20). See Exercise 1.

To complete this section we show how the limit formula for I'(x) can be derived
from an integral representation of I"(x). We first prove that when # is an integer
>0andRex > 0,

! !
=11 —pyidt = = 112
/Ot (1 —n"de T D e 1.127)

This is actually a special case of Theorem 1.1.4 but we give a direct proof by
induction, in order to avoid circularity in reasoning. Clearly (1.1.27) is true for
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1.2 The Euler Reflection Formula 9

n=0,and

1 1
/ tx~1(1 _ t)n+ldt — / tx—l(l _ t)(l _ t)ndt
0 0

n! n!
T @art G Dagp
(D!
(O

This proves (1.1.27) inductively. Now set t = u/n and let n — co. By the Lebesgue
dominated convergence theorem it follows that

o nln*~!
/ t*le7'dt = lim for Rex > 0.
0 n=00 (X)n
Thus, if we begin with the integral definition for I'(x) then the above formula can
be used to extend it to other values of x (i.e., those not equal to 0, —1, =2, ...).

Remark 1.1.3 1t is traditional to call the integral (1.1.12) the beta function. A
better terminology might call this Euler’s first beta integral and call (1.1.20) the
second beta integral. We call the integral in Exercise 13 Cauchy’s beta integral.
We shall study other beta integrals in later chapters, but the common form of these
three is fC[ZI ()P, (1) ]9dt, where £,(t) and £,(t) are linear functions of ¢, and
C is an appropriate curve. For Euler’s first beta integral, the curve consists of a
line segment connecting the two zeros; for the second beta integral, it is a half line
joining one zero with infinity such that the other zero is not on this line; and for
Cauchy’s beta integral, it is a line with zeros on opposite sides. See Whittaker and
Watson [1940, §12.43] for some examples of beta integrals that contain curves of
integration different from those mentioned above. An important one is given in
Exercise 54.

1.2 The Euler Reflection Formula

Among the many beautiful formulas involving the gamma function, the Euler
reflection formula is particularly significant, as it connects the gamma function
with the sine function. In this section, we derive this formula and briefly describe
how product and partial fraction expansions for the trigonometric functions can be
obtained from it. Euler’s formula given in Theorem 1.2.1 shows that, in a sense,
the function 1/ I'(x) is half of the sine function.

Theorem 1.2.1 Euler’s reflection formula:

V4

reord —x) = (12.1)

sinzx’

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521623219
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521623219 - Special Functions
George E. Andrews, Richard Askey and Ranjan Roy

Excerpt

More information

10 1 The Gamma and Beta Functions

Remark The proof given here uses contour integration. Since the gamma function
is a real variable function in the sense that many of its important characterizations
occur within that theory, three real variable proofs are outlined in the Exercises.
See Exercises 15, 16, and 26-27.

Since we shall show how some of the theory of trigonometric functions can be
derived from (1.2.1), we now state that sin x is here defined by the series

. e
Sin = ——— —_— —_— e,
ey 2i TS
The cosine function is defined similarly. It is easy to show from this definition that

sine and cosine have period 277 and thate™ = —1. See Rudin [1976, pp. 182-184].
Proof. Sety=1—x,0 <x < 1in(1.1.20) to obtain

-1

L+t

To compute the integral in (1.2.2), consider the integral

x—1
/Z dz,
cl—z

where C consists of two circles about the origin of radii R and € respectively,
which are joined along the negative real axis from —R to —e. Move along the
outer circle in the counterclockwise direction, and along the inner circle in the
clockwise direction. By the residue theorem

rer'd —x) = /00 dt. (1.2.2)
0

Zx—l
/ dz = —2nmi, (1.2.3)
cl—z

when z*~! has its principal value. Thus

b4 ineixG € tx—leixn -7 l«fxeixe R tx—le—ixn
—2ri= —d6 dt+ — 6 —dt.
! /_,, 1—Rei? +/R 141 /,, 1—¢et? +/€ 1+

Let R — oo and € — 0 so that the first and third integrals tend to zero and the
second and fourth combine to give (1.2.1) for 0 < x < 1. The full result follows
by analytic continuation. One could also argue as follows: Equality of (1.2.1) for
0 < x < 1 implies equality in 0 < Rex < 1 by analyticity; for Rex = 0,x # 0
by continuity; and then for x shifted by integers using I'(x 4+ 1) = xI'(x) and
sin(x + 7) = —sinx. A

The next theorem is an immediate consequence of Theorem 1.2.1.

Theorem 1.2.2

. i x?
sinTtx = an 1 - ) (1.2.4)
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