Plants at the Margin

Ecological Limits and Climate Change

Plants at the limits of their distribution are likely to be particularly affected by climate change. Biogeography, demography, reproductive biology, physiology and genetics all provide cogent explanations as to why limits occur where they do. The book brings together these different avenues of enquiry, in a form that is suited to students, researchers and anyone with an interest in the impact of climate change. Margins are by their very nature environmentally unstable does it therefore follow that plant populations adapted for life in such areas will prove to be pre-adapted to withstand the changes that may be brought about by a warmer world? This and other questions are explored concerning the changes that may already be taking place on this planet. Numerous illustrations are included to remind us that knowledge of the existence of plants in their natural environment is essential to our understanding of their function and ecology in a changing world.

R. M. M. CRAWFORD has taught and researched at the University of St Andrews since 1962, pursuing the study of plant responses to the environment in a wide range of habitats in Scotland, Scandinavia, North and South America and the Arctic. He is a Fellow of the Royal Society of Edinburgh, a Fellow of the Linnean Society and an associate member of the Belgian Royal Academy. Cambridge University Press 978-0-521-62309-4 - Plants at the Margin: Ecological Limits and Climate Change R. M. M. Crawford Frontmatter More information

Plants at the Margin Ecological Limits and Climate Change

R. M. M. Crawford

Professor Emeritus, University of St Andrews, Scotland

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521623094

© R. M. M. Crawford 2008

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2008

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-62309-4 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

For Barbara and all who inhabit, study and value marginal lands

Fortunatus et ille, Deos qui novit agrestes Virgil, Georgics: Book II

Contents

Preface	page xiii
Acknowledgements	XV

PART I THE NATURE OF MARGINAL AREAS

1	Reco	gnizin	g margins	3
	1.1	Defini	ng margins	5
	1.2	Margins and climate change		
	1.3	Limits	to distribution	8
		1.3.1	Physiological boundaries	9
		1.3.2	Resource availability	9
		1.3.3	Resource access and	
			conservation in marginal areas	15
	1.4	Geneti	ic boundaries	17
	1.5	Demo	graphic factors	17
		1.5.1	Limits for reproduction	19
	1.6	Relict	species and climate change	19
		1.6.1	Evolutionary relicts	20
		1.6.2	Climatic relicts	20
	1.7	Endan	gered species	23
	1.8	Agricu	ltural margins	24
	1.9	Conclu	usions	26
2	Biod	Biodiversity in marginal areas		
	2.1	Biodiv	ersity at the periphery	31
	2.2	Assess	ing biodiversity	31
		2.2.1	Definitions of biodiversity	31
		2.2.2	Problems of scale and	
			classification	34
		2.2.3	Variations in assessing	
			genetic variation	35
	2.3	Variati	ion in peripheral areas	36
	2.4	Distur	bance and biodiversity	36
		2.4.1	Grazing	37

4

viii Contents

		2.4.2	Fire	42
	2.5	5 The geography of marginal plant		
		biodive	rsity	43
		2.5.1	The South African Cape flora	45
		2.5.2	Mediterranean heathlands	48
		2.5.3	Mediterranean-type vegetation	
			worldwide	50
		2.5.4	The Brazilian Cerrado	51
	2.6	Plant d	iversity in drylands	52
	2.7	Plant d	iversity in the Arctic	57
	2.8	Conclu	sions	59
DAT	יד דו		NT FUNCTION IN	
PAF	\ I II	MA	PGINAL APEAS	
		10171	KOINAL AKEAS	
3	Reso	urce ac	quisition in marginal	
	habit	ats		63
	3.1	Resour	ce necessities in	
		non-pr	oductive habitats	65
	3.2	Adapta	tion to habitats with	
		limited	resources	68
		3.2.1	Capacity adaptation	69
		3.2.2	Functional adjustment	70
		3.2.3	Adverse aspects of capacity	
			adaptation	72
		3.2.4	Climatic warming and the	
			vulnerability of specific tissues	74
	3.3	Habitat	productivity and competition	77
		3.3.1	Plant functional types	78
	3.4	Life hi	story strategies	81
		3.4.1	Two-class life strategies	81
		3.4.2	Three-class life strategies	83
		3.4.3	Four-class life strategies	83
	3.5	Resour	ce allocation	84
	3.6	Resour	ce acquisition in marginal areas	85
		3.6.1	Competition for resources in	
			marginal areas	85
		3.6.2	Deprivation indifference	86
		3.6.2 3.6.3	Deprivation indifference Deprivation indifference	86
		3.6.2 3.6.3	Deprivation indifference Deprivation indifference through anoxia tolerance	86 87
		3.6.2 3.6.3 3.6.4	Deprivation indifference Deprivation indifference through anoxia tolerance Avoiders and tolerators	86 87 89
	3.7	3.6.2 3.6.3 3.6.4 Alterna	Deprivation indifference Deprivation indifference through anoxia tolerance Avoiders and tolerators tive supplies of resources	86 87 89 90
	3.7	3.6.2 3.6.3 3.6.4 Alterna 3.7.1	Deprivation indifference Deprivation indifference through anoxia tolerance Avoiders and tolerators tive supplies of resources Light	86 87 89 90 90
	3.7	3.6.2 3.6.3 3.6.4 Alterna 3.7.1 3.7.2	Deprivation indifference Deprivation indifference through anoxia tolerance Avoiders and tolerators tive supplies of resources Light Precipitation	86 87 89 90 90 91
	3.7	3.6.2 3.6.3 3.6.4 Alterna 3.7.1 3.7.2 3.7.3	Deprivation indifference Deprivation indifference through anoxia tolerance Avoiders and tolerators tive supplies of resources Light Precipitation Ground water	86 87 89 90 90 91 92
	3.7	3.6.2 3.6.3 3.6.4 Alterna 3.7.1 3.7.2 3.7.3 3.7.4	Deprivation indifference Deprivation indifference through anoxia tolerance Avoiders and tolerators tive supplies of resources Light Precipitation Ground water Carbon	86 87 89 90 90 91 92 96

	3.7.6	Phosphate	100		
	3.7.7	Phosphate availability at high			
		latitudes	101		
3.8	Mycori	rhizal associations in			
	nutrien	t-poor habitats	102		
	3.8.1	Mycorrhizal associations in	100		
	202	the Arctic	102		
2.0	3.8.2	Cluster roots	103		
3.9 2.10	Change	nt retention in marginal areas	105		
5.10	Changes in resource availability in				
	warmin		106		
	warmin	15	100		
Repr	oductio	on at the periphery	109		
4.1	Enviro	nmental limits to reproduction	111		
4.2	Sexual	reproduction in marginal			
	habitat	5	111		
	4.2.1	Pre-zygotic and post-zygotic			
		limitations to seed			
		production	111		
4.3	Germin	nation and establishment in			
	margin	al areas	114		
4.4	Phenol	ogy	116		
	4.4.1	Reproduction in flood-prone			
		tropical lake and river			
		margins	116		
4.5	Hybrid	zones	118		
	4.5.1	I ransient and stable hybrids	118		
	4.5.2	Hybrid swarms	120		
	4.5.3	Spartina anglica – common	100		
	454	Sanacia squalidus the Oxford	122		
	т.э.т	senetio squanaus – the Oxford	123		
4.6	Geneti	c invasion in marginal areas	125		
1.0	461	Invasion and	120		
	1.0.1	climatic warming	127		
	4.6.2	Climatic warming.			
		disturbance and invasion	130		
	4.6.3	Theories on habitat liability			
		to invasion	131		
4.7	Reprod	luction in hot deserts	131		
	4.7.1	Diversity of plant form in			
		drought-prone habitats	131		
	4.7.2	Desert seed survival			
		strategies	134		
4.8	Flower	ing in arctic and alpine			
	habitat	S	135		
	4.8.1	Annual arctic plants	140		

CAMBRIDGE

R. M. M. Crawford Frontmatter More information

Contents ix

4.9	Mast seeding	142
4.10	The seed bank	146
	4.10.1 Polar seed banks	147
	4.10.2 Warm desert seed banks	148
4.11	Biased sex ratios	148
4.12 Clonal growth and reproduction in		
	marginal habitats	153
	4.12.1 Asexual reproduction	153
4.13	Longevity and persistence in	
	marginal habitats	155
4.14	Conclusions	158

PART III MARGINAL HABITATS – SELECTED CASE HISTORIES

5	Arct	ic and	subarctic treelines and the	
	tund	tundra-taiga interface		161
	5.1	The tu	ındra–taiga interface	163
		5.1.1	Migrational history of the	
			tundra-taiga interface	163
	5.2	Climat	ic limits of the boreal forest	166
		5.2.1	Relating distribution to	
			temperature	166
		5.2.2	Krummholz and treeline	
			advance	169
	5.3	Climat	ic change and forest migration	174
		5.3.1	Boreal migrational history	174
	5.4	Fire, a	nd paludification at the	
		tundra	-taiga interface	178
		5.4.1	Post-fire habitat degradation	178
		5.4.2	Treelines and paludification	179
		5.4.3	History of paludification	181
		5.4.4	Bog versus forest at the	
			tundra-taiga interface	183
	5.5	Homeo	ostasis and treeline stability	185
	5.6	Boreal	forest productivity at high	
		latitud	es	187
		5.6.1	Physiological limits for tree	
			survival at the tundra-taiga	
			interface	188
		5.6.2	Carbon balance	190
		5.6.3	Carbon balance versus tissue	
			vulnerability at the treeline	191
		5.6.4	Winter desiccation injury	191
		5.6.5	Overwintering photosynthetic	
			activity	191
			-	

	5.7	Future trends at the tundra-taiga		
		interface		
	DI			105
6	Plant survival in a warmer Arctic			197
	6.1	Defini	ng the Arctic	199
	6.2	Signs	of change	199
	0.3	I he A	rctic as a marginal area	204
	6.4	0.3.1	Mapping arctic margins	204
	0.4	Pleisto	cene history of the arctic	205
		110ra	Passagement of ice cover in	205
		0.4.1	polar regions	205
		642	Molecular evidence for the	205
		0.7.2	existence of glacial refugia	
			at high latitudes	211
		643	Evidence for an ancient	211
		0.1.5	(autochthonous) arctic flora	213
	65	Habita	t preferences in high arctic	215
	0.0	plant o	communities	213
		6.5.1	Incompatible survival	210
		0.0.11	strategies	214
		6.5.2	Ice encasement and the	
			prolonged imposition	
			of anoxia	214
	6.6	Mutua	lism in arctic subspecies	215
	6.7	Polypl	oidy at high latitudes	216
	6.8	Arctic oases Phenological responses to increased		219
	6.9			
		temper	ratures	221
	6.10	Conclu	usions	224
7	Ŧ	1 1 .	1 .	225
1		challe	s at coastal margins	225
	1.1	Challe	nges of the maritime	227
			The concert of coconicity	227
		7.1.1	The concept of oceanicity	220
		7.1.2	fragility	221
	72	North	magnity arn hemisphere coastal	231
	1.2	vegeta	tion	235
		7 2 1	Foreshore plant communities	235
		7.2.1	Dune systems of the North	235
		,	Atlantic	238
		7.2.3	Arctic shores	240
	7.3	South	ern hemisphere shores	246
		7.3.1	Antarctic shores	246
		7.3.2	New Zealand	248
	7.4	Global	shore communities	250
		7.4.1	Salt marshes and mudflats	250

9

10

x Contents

		7.4.2	Rising sea levels and	
			mudflats	251
	7.5	Hard s	hores	252
		7.5.1	Cliffs and caves	252
		7.5.2	North Atlantic cliffs	254
	7.6	Trees 1	by the sea	256
		7.6.1	Mangrove swamps	256
	7.7	Physiol	logical adaptations in coastal	
		vegetat	ion	263
		7.7.1	Drought tolerance	263
		7.7.2	Nitrogen fixation	264
		7.7.3	Surviving burial	264
		7.7.4	Flooding	267
	7.8	Conser	vation versus cyclical	
		destruc	tion and regeneration in	
		coastal	habitats	269
	7.9	Conclu	sions	271
8	Surv	ival at	the water's edge	273
0	81	Floodi	ng endurance	275
	0.1	8 1 1	Life-form and flooding	215
		0.1.1	tolerance	277
		812	Seasonal responses to	277
		0.1.2	flooding	281
	82	Aeratio	m	281
	0.2	8 2 1	Radial oxygen loss	281
		8.2.2	Thermo-osmosis	282
	83	Respon	uses to long-term	202
	0.0	winter	flooding	284
		8.3.1	Surviving long-term oxygen	-01
		0.011	deprivation	285
	8.4	Floodii	and unflooding	286
	0.1	8.4.1	Unflooding – the post-anoxic	-00
			experience	286
	8.5	Respon	uses to short-term flooding	
		during	the growing season	287
		8.5.1	Disadvantages of flooding	
			tolerance	289
	8.6	Amphi	bious plant adaptations	290
		8.6.1	Phenotypic plasticity in	
			amphibious species	290
		8.6.2	Speciation and population	
			zonation in relation	
			to flooding	291
	8.7	Aquati	c graminoids	292
		8.7.1	<i>Glyceria maxima</i> versus	
			Filipendula ulmaria	295

	8.7.2	Sweet flag (Acorus calamus)	295
	8.7.3	Reed sweet grass	
		(Glyceria maxima)	298
	8.7.4	The common reed (Phragmites	5
		australis)	300
	8.7.5	Amphibious trees	301
8.8	Tropic	al versus temperate trees in	
	wetlan	d sites	301
8.9	Conclu	isions – plants with wet feet	305
Woo	dy plar	nts at the margin	307
9.1	Woody	plants beyond the treeline	309
9.2	Woody	plants of the tundra	311
9.3	Monta	ne and arctic willows	314
9.4	Mount	ain birches	318
	9.4.1	Biogeographical history of	
	,,,,,,	mountain birch	322
	942	Current migration	323
95	Dwarf	birches <i>Betula nana</i> and	525
).5	B alar	dulosa	373
	951	Biogeographical history of	525
	7.5.1	dwarf birch	373
0.6	Feelog	ical sensitivity of woody	525
9.0	nlants	to oceanic conditions	374
0.7	Junino		226
9.7	Jumpe	r anda	320 220
9.0		Deletione heathlands to	329
	9.8.1	Relating neathlands to	220
	0.0.2	climate	329
	9.8.2	Possible migration behaviour	332
	9.8.3	Historical ecology of	224
0.0		heathlands	334
9.9	New Z	Lealand: a hyperoceanic	
	case st	udy	334
9.10	Conclu	ISIONS	337
Dlam	ta at hi	mh altitudag	220
10.1	ts at m	light attitudes	241
10.1	Mount	unai mints to plant survival	242
10.2	10.2.1	Incolhorma isolated	545
	10.2.1	Inselbergs – isolated	215
	10.2.2	A fuicen incollector	247
10.2	10.2.2	African inscidergs	34/
10.5	Aspect	s or nigh-attitude habitats	348
	10.3.1	Geology and mountain	250
	10.2.2	noras	350
	10.3.2	Adiabatic lapse rate	352
	10.3.3	Mountain topography and	
		biodiversity	352

CAMBRIDGE

Contents xi

10.4	Physiological implications for plant		
	survival on high mountains		
	10.4.1 Water availability at high		
	altitudes	355	
	10.4.2 Adapting to fluctuating		
	temperatures	355	
	10.4.3 Protection against high levels		
	of radiation at high altitudes		
	and latitude	356	
	10.4.4 Effect of UV radiation on		
	alpine vegetation	359	
	10.4.5 Oceanic mountain		
	environments	360	
	10.4.6 Phenological responses of		
	mountain plants	361	
10.5	Alpine vegetation zonation –		
	case studies	363	
	10.5.1 Temperate and boreal alpine		
	zonation	364	
	10.5.2 Tropical and subtropical		
	mountains – East Africa	364	
	10.5.3 South America	365	
10.6	The world's highest forests	366	
	10.6.1 The Peruvian Highlands	369	
10.7	High mountain plants and		
	climate change	369	
	10.7.1 Indirect effects of increased		
	temperature on alpine		
	vegetation – reduction in		
	winter snow cover	372	
	10.7.2 Effects of increased		
	atmospheric CO_2 on high	272	
10.0	mountain vegetation	372	
10.8	Alpine floral biology	376	
10.9	Conclusions	379	
Man	at the margins	381	
11 1	Human settlement in peripheral	501	
11.1	areas	383	
11.2	Past and present concepts of	0.00	
	marginality	384	
	11.2.1 Agricultural sustainability in		
	marginal areas	386	

	11.3	Man ir	the terrestrial Arctic	389
		11.3.1	Acquisition of natural	
			resources at high latitudes	391
		11.3.2	Future prospects for the	
			tundra and its native peoples	395
	11.4	Man o	n coastal margins	396
		11.4.1	Human acceleration of soil	
			impoverishment in oceanic	
			regions	398
		11.4.2	Sustainable agriculture in	
			oceanic climates: Orkney –	
			an oceanic exception	403
	11.5	Exploit	ting the wetlands	404
		11.5.1	Coastal wetlands	404
		11.5.2	Human settlement in	
			reed beds	405
		11.5.3	Agricultural uses of wetlands	406
		11.5.4	Recent developments in bog	
			cultivation	409
		11.5.5	Future uses for wetlands	411
	11.6	Man ir	the mountains	411
		11.6.1	Transhumance	411
		11.6.2	Terrace farming	413
	11.7	Conclu	isions	417
	a			
12	Sum	mary a	and conclusions	419
	12.1	Signs o	of change	421
	12.2	Vegeta	tion responses to climate	100
	10.0	change		422
	12.3	Pre-ada	aptation of plants in marginal	100
	10.4	areas to	o climatic change	423
	12.4	Physica	al fragility versus biological	
		stabilit	y and diversity	424
	12.5	Margir	al areas and conservation	426
		12.5.1	Regeneration and the role of	10.6
	10 (Б	margins	426
	12.6	Future	prospects for marginal areas	430
Ref	erences			433
Aut	hor ind	lex		461

•	2 100000	11111010	101
	Species	index	465
6	Subject	index	471

11

Preface

Margins have long provided key questions for ecological investigation. Today with climatic warming becoming ever more apparent margins as regions of ecological change invite an assessment of their responses to environmental alteration. The purpose of this book is therefore to examine how marginal plant communities in different parts of the world are responding to climate change. Practically every aspect of modern biological enquiry can be used to address the nature of margins. Biogeography, demography, reproductive biology, physiology and genetics all provide cogent explanations as to why limits occur where they do. The aim of this book is to bring together, wherever possible, different avenues of enquiry in relation to explaining the existence of limits to plant distribution. Each of these disciplines can contribute to our understanding of the biological consequences of climatic warming.

Marginal areas have a number of features in common. These can be seen in demographic limits to population renewal, in adaptations to shortness of the growing season, in problems of access to resources, and impediments to reproduction. To avoid repetition an attempt is made therefore to discuss these common features before moving on to individual case studies.

Part I examines the nature of margins and their effects on biodiversity. Part II is functional, and explores how plants in marginal areas overcome the shortness of the growing season and other physical limitations in acquiring resources and reproducing. The remaining chapters look at individual examples of marginal areas which have been selected on the supposition that they may be sensitive to climatic change.

In a scenario of a warmer world it is highly probable that changing climatic conditions will have a particularly marked effect on human exploitation of

xiv Preface

marginal areas. The history of human settlement in peripheral areas is therefore discussed in relation to our use of plants in marginal areas. Climatic change will also create problems for conservation particularly in relation to the interactions between human beings, their livestock and the environment. The consequences of both higher temperatures and greater human populations create a worldwide problem with particularly serious consequences for marginal regions.

In this book an attempt is made to compare the sensitivity of different margins with climate change and to explore the question of whether or not all peripheral areas are equally likely to suffer losses in biodiversity as a result of climatic change. The converse situation is also considered. Margins are by their very nature environmentally unstable. Does it therefore follow that plant populations adapted for life in areas of climatic uncertainty will prove to be pre-adapted to withstand the changes that may be brought about by a warmer world?

Numerous illustrations have been included as a reminder of the place of plants in their habitats and that whatever may be learnt from the application of sophisticated methods of investigation it is the existence of the plant in its environment that has prompted our initial curiosity. Cambridge University Press 978-0-521-62309-4 - Plants at the Margin: Ecological Limits and Climate Change R. M. M. Crawford Frontmatter More information

Acknowledgements

This book would never have been finished if it were not for the many colleagues and friends who have been willing to give me the time and benefit of their specialist knowledge. I am especially grateful to colleagues who have read particular chapters, Professor R. J. Abbott (St Andrews), Professor R. Brändle (Berne), Professor F.-K. Holtmeier (Münster), Professor Ch. Körner Bale, Professor D. Tomback (Colorado), Dr L. Nagy (Glasgow), Professor S. Payette (Québec) and Dr C. Vassiliadis (Paris). They may have saved me from error; if not, the fault is entirely mine. Many others have provided invaluable help in sourcing data and providing illustrations from all corners of the globe.

I am particularly grateful for detailed documentation as well as access to extensive collections of images from distant places to Professor R. Cormack (St Andrews), Dr A. Gerlach (Oldenburg), Professor F.-K. Holtmeier (Münster), Professor R. Jefferies (Toronto), Dr L. Nagy (Glasgow), and Professor J. Svoboda (Toronto). The privilege of using these images is acknowledged in the legends.

My own opportunities for studying plants in different parts of the world have been greatly aided by generous assistance from the Natural Environment Research Council, the Carnegie Trust for the Universities of Scotland, the Leverhulme Foundation and the Erskine Trust of the University of Canterbury (New Zealand).

This work would never have been undertaken had it not been for the stimulation and encouragement provided by the Cambridge University Press and I am particularly indebted to Dr Alan Crowden for the initial imaginative prompting that made me attempt this task, and to Dr Dominic Lewis and the production staff for bringing it to completion.