Index

Note: footnotes are indicated by suffix 'n'

 ϵ -contaminated classes for robust hypothesis testing 198-9 σ -algebra 6 σ -field 6 adaptive quickest detection, change detection in case of uncertainty 200-1 almost-sure convergence 16, 17 non-negative martingales/supermartingales 21, 55 American call options 46-9 asymptotically uniformly most powerful (AUMP) test 207 autoregressive (AR) process 202n6 autoregressive moving average (ARMA) processes 204 average cost of errors 67 average sample number (asn) sequential probability ratio test 80, 96 calculation of 98 SPRT-like stopping time, calculation of 208 backward induction 42-3 Bayesian optimal sequential decision rule 73 Bayesian quickest detection Brownian observations 109-15 decentralized version 184-9 game theoretic formulation 125-8 Poisson observations 115-22 probability maximizing approach 122-4 Shiryaev's problem continuous-time case 109-22 discrete-time case 103-9 Bellman equation 182, 192 Bernoulli random variables 108 Bernoulli trials, sequential probability ratio test 76, 77 Borel-Cantelli lemmas 18 Borel σ -field 7n, 14n bounded convergence theorem 17 applications 55, 89, 104, 112, 114, 120, 147 Brownian motion 28-30 basic properties 29-30 sample-path continuity 29, 89, 113

with two-sided alternatives 167-71 with unknown drift parameter, non-Bayesian quickest detection for 152-4 Brownian motion models with distinct drift parameters 81-6 with distinct variance parameters 86 Brownian observations Bayesian quickest detection 109-15 non-Bayesian quickest detection 144-50 sequential detection 81-90 càdlàg functions 26 space of 93, 115, 154 càdlàg martingale 38 càdlàg process 31, 117 Cameron-Martin formula 38, 82 applications 82, 83, 94 cardiac patients, monitoring of 1 central limit theorem 18 applications 209 change detection, applications covered 1 change-point detection 1 see also Bayesian quickest detection; non-Bayesian quickest detection characteristic function 10 Chebychev's central limit theorem 18 classical sequential detection problem, as optimal stopping problem 65 climate modeling applications 1 coin-flipping experiment 168 computer network monitoring 1 condition monitoring 130 conditional expectation 11-13 in examples 14-15, 23 properties 23, 186 continuity properties 60, 61 continuous random variables 8 continuous-time Markov process 60 continuous-time semimartingales 32-4 with stationary and independent increments and integrable processes 28 convergence in distribution 16, 17

226	Index	
	convergence in probability 16, 17	Doob decomposition theorem 20
	relationship with L^p convergence 17	applications 51, 53
	counter-terrorism applications 1	increasing process in 20, 23
	cumulative probability distribution function (cdf) 8	Doob–Meyer decomposition 27
	cumulative sum (CUSUM) test 3, 128, 132	doubly stochastic Poisson process 31
	CUSUM process(es) 145, 164	drift parameter (Brownian motion) 28, 81
	log 152, 154	dynamic programming 46, 177
	normalized 169	econometrics applications 1
	optimality 203	efficient score statistic 203
	threshold and 155, 156	environmental applications 1
	CUSUM stopping time(s) 132, 139, 140, 144, 145–6, 150, 152, 154, 155	equalizer rule, CUSUM stopping time as 134, 14 146, 155
	asymptotic optimality 157, 158–61, 168–71, 212	error probabilities
	classical 2-CUSUM stopping time 168, 171	bounds 77–8
	normalized 169	relationship with expected runlengths 75-6
	connection with Shiryaev–Roberts–Pollack	relationship with thresholds 74-5, 85
	stopping time 163	errors
	as equalizer rule 134, 143, 146, 155	average cost of 67
	generalized 200 modified drift 2 CUSUM stanning time 169, 171	cost of, tradeoff against sampling cost 66-72
	definition(s) 160	errors cost/sampling cost optimization problem
	normalized 160	67–72
	normalized 109 one sided 153 154 157	example 72–3
	ontimality 148_50 152 155 105	as Markov optimal stopping problem 67, 69, 7
	and sequential probability ratio test 150_61_201	essential supremum (esssup) 42n, 131n1
	worst-case detection delay for 145	event class 6
	cycle (in Ritoy's game-theoretic problem) 127	events 7
	e, e.e. (in renov o game moorene problem) 127	excessive functions 60
	decentralized quickest detection, with fusion center	excessive majorants 60–1
	184–9	expected runlengths 78
	decentralized sequential detection	relationship with error probabilities 75–6
	advantages and disadvantages 174	expected value(s) 8–10
	with fusion center 176–84	expiration date (in American call options) 46–7
	without fusion 189–94	exponential detection-delay penalty 125, 131
	decentralized system	exponential family 205
	configurations 175	extended random variable(s) 8, 11
	information flow in 175-6, 177, 184	as limits of monotonically increasing
	quantized information in 174, 175, 176	sequences 53
	delay differential equation (DDE) 98	failure times, model for 106
	solution(s) 99, 155, 156	fair sequence 19
	detection delay	false-alarm rate
	mean value used (in Bayesian quickest detection) 3, 103	in Bayesian quickest detection 3, 102, 103, 12 165
	worst-case value used (in non-Bayesian quickest detection) 4, 130, 131, 143	in non-Bayesian quickest detection 131, 144, 1 164, 165
	detection-delay/false-alarm rate trade-off,	constraint 131, 171-2
	optimization of 3, 102, 103, 131, 165	Fatou's lemma 17
	detection-delay penalties	applications 57, 105, 186
	in Bayesian quickest detection 124-5	filtration 19, 20
	in non-Bayesian quickest detection 157, 162	continuous-time analog 27
	diffusion approximations 86	example 20
	diffusion processes see Brownian motion;	finance applications 1
	Itô processes	finite variation process 32–3

compared with sequential testing 65 fraud detection 1

Fisher information matrix 203

fixed-sample testing 167

Index fusion center (in decentralized system) 174, 175 decision made by 174, 176 linear-time (false detection) penalty 125 local martingales 32–3

geometric prior distribution (of change point) 3, 106 Girsanov's theorem 38, 145 historical texts, analysis of 1 homogeneous Markov processes 41, 60, 69 homogeneous Poisson counting process (HPCP) 31 in Bayesian quickest detection 115, 116 in sequential detection 93 homogeneous Poisson processes 31, 116, 154 image analysis applications 1 independence (statistical) 13-14, 17-18 example 15 independent increments 28 independent likelihood ratio sequences, quickest detection with 201-3 infinitely divisible distributions 30 inhomogeneous Poisson process 31 innovation process 87, 114 innovation theorem 37 applications 112 inspection systems, change detection in 130 integrable random variable 9 Itô processes 36 non-Bayesian quickest detection for 150-2 properties 36-8 sequential detection for 91-3 Itô's isometry 35 Itô's rule 36-7 applications 82, 87, 114, 147, 170 generalized 37, 155 Itô stochastic differential equation 36-7 applications 82, 87, 114 Jensen's inequality 10 applications 22, 23, 75, 76, 93, 115 Kolmogorov's inequality 20 compared with Markov's inequality 20 continuous-time analog 27 Kolmogorov's strong law of large numbers 18 Kullback-Leibler divergence 131, 151, 196, 207

optimal sequential decision rules 177, 183, 184

generalized Radon-Nikodym derivative 11

Lebesgue decomposition theorem 10, 11 Lebesgue–Stieltjes integral 9, 34 likelihood ratio under alternative hypothesis 21–2 under null hypothesis 21 likelihood ratio sequence(s) independence 202 quickest detection with independent 201–3 sequential detection and 72, 100

locally asymptotically normal (LAN) distributions 203 - 5characteristics 208 meaning of term 204 Lorden's criterion 144, 157, 165 Lorden's delay penalty 165, 167, 195 Lorden's problem continuous-time case 144-57 discrete-time case 130-41 L^p convergence 16, 17 relationship with convergence in probability 17 Markov optimal stopping problem(s) 40-1, 46-50, 69,70 continuous-time 60-1, 120 meaning of term 41 Markov optimal stopping theory 2, 40-61 applications 132, 183 Markov process 40-1, 46, 60 transition properties 41, 60 Markov's inequality, compared with Kolmogorov's inequality 20 Markov time, meaning of term 24 martingale convergence theorem 20, 27 martingales 19-21 continuous-time analogs 26-7 examples 21-3 gambling analogy 19 measurable space 7 medical diagnosis applications 1 min-max criterion, as delay penalty 162 min-max optimization problem 163 minimal Bayes cost, determination of 90 minimal cost function 71 minimal runlength 73 minimal supermartingale 52 moment-generating function 10 in examples 22 monotone convergence theorem 17 applications 53, 56, 57, 89, 111, 117, 133 monotone likelihood ratio quantizer (MLRQ) 189 monotone pointwise limit 71 Moustakides' proof of optimality of Page's CUSUM test 132 navigation systems monitoring 1 network security applications 1 neuroscience applications 1 non-Bayesian quickest detection asymptotic results 157-71 Brownian motion with two-sided alternatives

167–71 Lorden's approach 158–67

228	Index	
	non-Bayesian quickest detection (cont.)	probability mass function (pmf) 9
	Brownian observations 144-50	probability measure 6
	Itô processes 150–2	properties 7
	Lorden's problem	probability spaces 6–7
	continuous-time case 144–57	probability theory 6–39
	discrete-time case 130–41	product measure 15
	Poisson observations 154–7	public health applications 1
	Novikov condition 38n, 110, 145	
	odds ratio process 118, 163, 164	quadratic variation process 23, 33
	operating characteristic (of sequential probability	quickest detection
	ratio test) 80, 96, 97	applications 1
	optimal stopping problem 40	Bayesian framework 102–29
	detection-delay/false-alarm rate trade-off	local hypothesis approach 210-12
	ontimization treated as 103–4 134	non-Bayesian framework 130-73
	finite-horizon case	with dependent observations 201-12
	general case 41–5	with independent likelihood ratio sequences
	Markov case 46–50	201-3
	martingale interpretation 51–2	with modelling uncertainty 194–201
	infinite-horizon case 50–60	adaptive quickest detection used 200–1
	for bounded reward 52–5	robust quickest detection used 194–9
	general case 55–9	quickest detection problem(s) 1, 102
	with Markov rewards 59–60	Lorden's formulation
	optimal stopping time(s) 45, 56	continuous-time case 144–57
	in Bayesian quickest detection 106, 107, 109,	discrete-time case 130–41
	121, 122, 124, 127	Page's test for 132, 140
	in decentralized quickest detection with fusion	Shiryaev's formulation
	center 189	continuous-time case 109–22
	in decentralized sequential detection without	discrete-time case 103–9
	fusion 192	
	in non-Bayesian quickest detection 134, 138,	radio monitoring applications 1
	165, 168	Radon–Nikodym derivatives 10–11
	in sequential detection 70	applications 91, 151, 163
	option trading, example 46–9	example 11
	optional sampling theorem 24-5	generalized 11
	applications 54, 55, 105, 112, 187	Radon–Nikodym theorem 10
	continuous-time 27, 88	applications 68, 82, 83, 94
	optional time 27	conditional expectation as corollary to 12
	overview of book 2–3	random experiment 6
		random sequences 15–18
	Page's CUSUM test 3, 128, 132, 140, 142–4	random variable(s) /-8
	payoff (in optimal stopping problem) 40, 49	central moments 10
	penalty functions 103, 124–5	expected value(s) 8–10
	performance analysis /4–81	limits of sequences 18
	Peisson-by-person optimal decision rule 1/9, 187	mean of 10
	Poisson observations	moments 10
	Bayesian quickest detection 115–22	types 8
	sequential detection 02 101	random walk from interval first avit time 70, 142
	Poisson processes 30-2	regular martingales 23
	Pollack's criterion 163 165	regular stopping times 25
	rollack 8 cilicitoli 105, 105	regular stopping tilles 23
	porynomiai-type delay penalty 124	renewal theory A 142
	prior distribution (of change point) 113–130	Riemann_Stielties integral 0
	probability convergence in 16, 17	Ritov's game_theoretic guideast detection
	probability density function (ndf) 0	problem 125_8
	probability distribution see probability massure	provident $123-0$ solution by Page's test 3, 128, 132, 140
	probability distribution see probability medsure	301010110y 1 ago 3 1051 3, 120, 132, 140

Index

229

Ritov's proof of optimality of Page's CUSUM test 132 robust quickest detection, change detection in case of uncertainty 194-9 runlengths (of sequential probability ratio tests), relationship with error probabilities 75, 85 sample-path continuity Brownian motion 84, 89, 113 Itô processes 36, 38 local martingale 33, 34 sample space 6 sampling cost 67 tradeoff against cost of errors 66-72 security applications 1 seismology applications 1 selection problem, example 43-5 self-exciting Poisson processes 31 semimartingales 19 sequential decision rule (s.d.r.) 66 applications 67, 72, 82, 84, 90, 92, 94, 177 for errors cost/sampling cost optimization problem 67, 72 sequential detection continuous-time case Brownian case 81-90 compound Poisson case 100-1 for Itô processes 91-3 Poisson case 93-100 local hypothesis approach 205-10 optimal detection 65-74 performance analysis 74-81 sequential probability ratio test (SPRT) 3, 73 average sample number (asn) 80, 96 calculation of 98 continuous-time case 84, 91, 92 and CUSUM 159-61, 201 operating characteristic (oc) 80, 96, 97 relationship between performance indices 74-6 the case of Iro processes 92 Wald-Wolfowitz property 91 sequential testing, advantages over fixed sample testing 65 Shiryaev-Roberts-Pollack stopping time 162-3, 171, 172, 173 connection with CUSUM stopping time and Shiryaev's stopping time 163 Shiryaev-Roberts stopping time 162, 163, 172 optimality 164-5 Shiryaev's criterion 103, 125, 165 Shiryaev's problem continuous-time case 109-22 Brownian observations 109-15 Poisson observations 115-22 discrete-time case 103-9 min-max solution 162

Shiryaev's stopping time 163 simple random variable 8 Snell envelope 2, 137 SPRT see sequential probability ratio test SPRT-like stopping time 206, 208 square-integrable martingales 23, 33 standard Brownian motion 28-9, 37, 38 applications quickest detection 109, 110, 143, 152, 211 sequential detection 81, 87, 92 stationary increments 28 stationary Markov optimal stopping problem 41 statistical change detection 1 'statistician vs nature' game 125-8 Stefan problem 94 stochastic convergence 16-17 stochastic differential equations 82, 87, 114 stochastic integral 34-9 stochastic optimization problem 185, 195 stochastic processes 15-16 stochastic sequence 40 Markov representation 41 stopping times 24-6 continuous-time analogs 27 localizing sequence 32 meaning of term 24 see also optimal stopping time(s) strike price (in American call options) 46 strong law of large numbers 18 applications 138, 159 submartingales 19 supermartingales 19 surveillance systems, change detection in 130 terminal decision rules 66 applications 67, 69, 82, 92, 94, 100, 178 thresholds 71 relationship with error probabilities 74-5 transition function (of Markov process) 60 type I and type II errors 67n uniform integrability 17 upper exit probability of random walk 78 variance parameter (Brownian motion) 28 video editing applications 1 Wald's approximations 77-8, 79, 86 Wald's identities 25-6 applications 30, 76, 79, 85, 113, 142, 159, 161 Wald-Wolfowitz theorem 73 applications 75, 95 continuous-time analogy 84 extension 90-1 Wiener measure 29 applications 110, 144, 152