
1 Introduction

The problem of detecting abrupt changes in the statistical behavior of an observed sig-
nal or time series is a classical one, whose provenance dates at least to work in the
1930s on the problem of monitoring the quality of manufacturing processes [224]. In
more recent years, this problem has attracted attention in a wide variety of fields, includ-
ing climate modeling [15], econometrics [4,5,7,8,34,51], environment and public health
[110,115,170,201], finance [7,30,193], image analysis [17,214], medical diagnosis
[59,84,85,171,229], navigation [148,159], network security [53,55,125,164,208,213],
neuroscience [60,66,217,232], other security applications such as fraud detection and
counter-terrorism [86,87,125,202], remote sensing (seismic, sonar, radar, biomedi-
cal) [104,143,172], video editing [126,134], and even the analysis of historical texts
[50,95,182]. This list, although long, is hardly exhaustive, and other applications can
be found, for example, in [6,8,18,19,45,52,87,114,128,131,149,161,162,163,165,230].
These cited references only touch the surface of a very diverse and vibrant field,
in which this general problem is known variously as statistical change detection,
change-point detection, or disorder detection.

Many of these applications, such as those in image analysis, econometrics, or the
analysis of historical texts, involve primarily off-line analyses to detect a change in
statistical behavior during a pre-specified frame of time or space. In such problems, it
is of interest to estimate the occurrence time of a change, and to identify appropriate
statistical models before and after the change. However, it is not usually an objective of
these applications to perform these functions in real time.

On the other hand, there are many applications of change detection in which it is
of interest to perform on-line (i.e. real-time) detection of such changes in a way that
minimizes the delay between the time a change occurs and the time it is detected. This
latter type of problem is know as the quickest detection problem, and this problem arises
in many of the above-noted applications. For example, in seismology, quickest detection
can be used to detect the onset of seismic events that may presage earthquakes. It is
important that such events be detected as quickly as possible so that emergency action
can be taken. Similar issues arise in the monitoring of cardiac patients, the monitoring
of the radio spectrum for opportunistic wireless transmission, the analysis of financial
indicators to detect fundamental shifts in sector performance or foreign exchange trends,
the monitoring of computer networks for faults or security breaches, etc. Again, the list
of such problems is quite long and diverse.
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2 Introduction

This book describes a theoretical basis for the design, analysis and understanding of
quickest detection algorithms. There are six chapters (plus bibliography) beyond the
current one. These are described briefly as follows.

(2) Probabilistic framework
This chapter provides an overview of the elements of probability theory needed
to place the quickest detection problem in a mathematical setting. The top-
ics reviewed include probability spaces, random variables, expectations, Radon–
Nikodym derivatives, conditional expectations and independence, properties of
random sequences, martingales, stopping times, Brownian motion, and Poisson pro-
cesses. It is assumed that the reader has prior exposure to most of these ideas, and
this chapter is intended primarily as a review and as a mechanism for establishing
notation and vocabulary.

(3) Markov optimal stopping theory
This chapter develops the concepts and tools of Markov optimal stopping the-
ory that are necessary to derive and understand optimal procedures for quickest
detection. These concepts include the general characterization of optimal stop-
ping procedures in terms of the Snell envelope, and the explicit techniques (e.g.
dynamic programming) for computing solutions to Markov optimal stopping prob-
lems. Three cases are treated: finite-horizon discrete time, infinite-horizon discrete
time, and infinite-horizon continuous time. The emphasis here is on the first two of
these cases, with the third case being treated only briefly. Several examples are used
to illustrate this theory, including the classical selection problem, option trading,
etc.

(4) Sequential detection
This chapter formulates and solves the classical sequential detection problem as an
optimal stopping problem. This problem deals with the optimization of decision
rules for deciding between two possible statistical models for an infinite, statisti-
cally homogeneous sequence of random observations. The optimization is carried
out by penalizing, in various ways, the probabilities of error and the average amount
of time required to reach a decision. By optimizing separately over the error prob-
abilities with the decision time fixed, this problem becomes an optimal stopping
problem that can be treated using the methods of the preceding chapter. As this
problem is treated in many sources, the primary motivation for including it here is
that it serves as a prototype for developing the tools needed in the related problem
of quickest detection.

With this in mind, both Bayesian and non-Bayesian, as well as discrete-time and
continuous-time formulations of this problem are treated as well as models that
combine both a discrete and a continuous nature. In the course of this treatment,
a set of analytical techniques is developed that will be useful in the solution and
performance analysis of problems of quickest detection to be treated in subsequent
chapters. Specific topics included are Bayesian optimization, the Wald–Wolfowitz
theorem, the fundamental identity of sequential analysis, Wald’s approximations,
and diffusion approximations.
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Introduction 3

A basic conclusion of this chapter is the general optimality of the sequential
probability ratio test (SPRT), which, in its various forms, is a central algorithm for
the problem of sequential detection.

(5) Bayesian quickest detection
This chapter treats the ‘disorder’ problem, first posed by Kolmogorov and Shiryaev,
in which the distribution of an observed random sequence changes abruptly at
an unknown time (the change point). This change point is assumed to have a
known geometric prior distribution, and hence this problem provides a Bayesian
framework for quickest detection. The choice of a geometric prior is mathemati-
cally convenient, but it also provides a reasonable model for a number of practical
applications.

The objective of a detection procedure in this situation is to react as quickly
as possible to the change in distribution, within a constraint on the probability of
reacting before the change occurs. Thus, the design of such procedures involves
the satisfaction of optimization criteria comprised of two performance indices: the
mean delay until detection, and the probability of false alarm (i.e. premature detec-
tion). As with the classical sequential detection problem, this problem can also be
formulated as an optimal stopping problem after a suitable transformation.

We also describe various other formulations of this problem starting with its
continuous-time analog of detecting a change in the drift of a Brownian motion,
where the prior for the change point is assumed to be exponential. We subsequently
consider a Poisson model which combines both continuous-time and discrete-time
features in its nature and treatment. We further include a different treatment of this
problem that focuses on devising a stopping rule that, with high probability, is as
close as possible to the change point. This problem is also formulated as an optimal
stopping problem and the tools developed in Chapter 3 are used for its treatment.

After a discussion of several alternative optimization criteria comprised of trade-
offs similar to the ones mentioned above, we finally conclude this chapter with a
game theoretic approach to the problem of Bayesian quickest detection, in which
the change point is viewed as having been selected by an opponent (“nature”)
playing a competitive game with the designer of the detection procedure.

A central theme of this chapter is the general Bayesian optimality of procedures
that announce the presence of a change point at the first upcrossing of a threshold
by the posterior probability of a change, given the past and present observations.
An exception to this general optimality arises in the game theoretic formulation, for
which the optimal solution is the so-called cumulative sum (CUSUM) procedure,
also known as Page’s test, which plays a central role in non-Bayesian formula-
tions of the quickest detection problem. This latter formalism thus provides a bridge
between Bayesian and non-Bayesian problems, and a segue to the next chapter of
this book.

(6) Non-Bayesian quickest detection
This chapter treats a non-Bayesian formulation of the quickest detection problem,
first proposed by Lorden, in which no prior knowledge of the change point is
known. For many applications, this formulation is more useful than the Shiryaev
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4 Introduction

formulation, since the assumption of a prior distribution for the change point is
sometimes unrealistic. Without a prior, however, the performance indices used in
the Shiryaev formulation of this problem – namely, mean detection delay and false-
alarm probability – are not meaningful since there is an infinite set of possible
distributions for the observations, one for each possible value of the change point.

Lorden’s formulation deals with this difficulty by replacing the mean detection
delay with a worst-case conditional delay, where the conditioning is with respect to
the change point, and the worst case is taken over all possible values of the change
point and all realizations of the measurements leading up to the change point. False
alarms are controlled by placing a lower bound on the allowable mean time between
false alarms. Here, considering first the discrete-time case, we present a solution to
the problem of minimizing delay within this constraint, again by appealing to a
related optimal stopping problem. The above-noted CUSUM algorithm is the opti-
mal solution here, and it is in fact the central (although not the only) algorithm
arising in non-Bayesian quickest detection problems.

Results from renewal theory are also used here to relate the performance of
optimal detection procedures for this problem to that of the classical sequential
detection procedures described in Chapter 4. Through this connection, a number of
approximations and bounds for the relevant performance indices are developed.

The non-Bayesian quickest detection problem is also treated under the assump-
tion of several continuous-time models for the observations. The problem is seen
once again as an optimal stopping problem, but now we introduce a different
approach, based on establishing global lower bounds for the performance of all rel-
evant stopping times, in solving it. In the case of a specific continuous-time model
we also discuss the practically important problem of an unknown change after the
change point.

We finally give several asymptotic results that are useful in the analysis of the
CUSUM algorithm, and in its generalization. We also apply this asymptotic analysis
to treat the problem of two-sided alternatives (i.e. changes in the mean of unknown
sign) in the context of a specific continuous-time observation model.

(7) Additional topics
This final chapter considers the problem of sequential and quickest detection in
several settings that arise from practical considerations not treated in the previous
chapters. These include decentralized, robust, and adaptive methods for quickest
detection. Decentralized problems arise, for example, in applications involving sen-
sor networks or distributed databases. Robust and adaptive methods are generically
of interest when there is uncertainty in the statistical models used to describe obser-
vations. Other generalizations and alternative formulations of the quickest-detection
problem are also described, notably in connection with problems in which the
observations do not form an independent sequence. Such problems arise in appli-
cations involving the analysis of time series, for example. All the results of this
chapter are cast in a discrete-time framework.

The basic idea in the treatment of the decentralized detection problems is to again
formulate them as optimal stopping problems and use the results of Chapter 3 to
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Introduction 5

solve them. Adopting a Bayesian model for the change point, the similarity of the
problems of decentralized sequential and quickest detection to the problems treated
in Chapters 4 and 5, in both formulation and solution, is easily seen. However, an
additional feature here that does not arise in the earlier formulations is the need of
optimizing local decisions in addition to global ones.

As noted above, the problems of robust and adaptive quickest detection treat
situations of modeling uncertainty. The two approaches are quite different, as
robust procedures seek to provide guaranteed performance in the face of small, but
potentially damaging, non-parametric uncertainties in statistical models, whereas
adaptive procedures are based on the on-line estimation of parametrized models. In
the former case, we describe and solve a minimax formulation of quickest detec-
tion, whereas the latter problem is solved using combined detection–estimation
procedures. In both case, the approach is essentially non-Bayesian.

Finally, we present the problem of quickest detection in the case of more general
dependence models than the independent-sampling models used in earlier chapters,
again using a non-Bayesian formulation. After first giving a precise generalization
of the optimality of the CUSUM to a class of dependent observation processes,
we then turn to a more general approach to change detection in time series mod-
els based on a general asymptotic local formulation of change detection, which
makes heavy use of diffusion approximations to develop asymptotically optimal
procedures.
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2 Probabilistic framework

2.1 Introduction

Probability theory provides a useful mathematical setting for problems of optimal stop-
ping and statistical change detection. This chapter provides a brief overview of the
concepts from probability that will be used in the sequel. This overview is organized
into five sections, a review of basic probability (Section 2.2), a collection of results about
martingales and stopping times (Section 2.3), some introductory material on Brownian
motion and Poisson processes (Section 2.4), an overview of semimartingales (Section
2.5), and the definition and properties of the stochastic integral (Section 2.6). Those who
are already familiar with the basic definitions of probability, expected value, random
variables, and stochastic convergence, may want to skip Section 2.2.

2.2 Basic setting

In this section, we define some essential notions from probability theory that will be
useful in the sequel. Most of this material can be found in many basic books, including
[37,46], or in the first chapter of [225].

2.2.1 Probability spaces

The basic notion in a probabilistic model is that of a random experiment, in which
outcomes are produced according to some chance mechanism. From a mathematical
point of view, this notion is contained in an abstraction – a probability space, which is
a triple (�,F , P) consisting of the following elements:

• a sample space � of elemental outcomes of the random experiment;
• an event class F , which is a nonempty collection of subsets of � to which we wish to

assign probabilities; and
• a probability measure (or probability distribution) P, which is a real-valued set

function that assigns probabilities to the events in F .

In order to be able to manipulate probabilities, we do not allow the event class to be
arbitrary, but rather we assume that it is a σ -field (or σ -algebra); that is, we assume
that F is closed under complementation and under countable unions. The usual algebra
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2.2 Basic setting 7

of set operations then assures that F is closed under arbitrary countable sequences of the
operations: union, intersection, and complementation. Such a class necessarily contains
the sample space � and the null set ∅. The elements of F are called events. A pair
(�,F) consisting of a sample space and event class is called a measurable space or a
pre-probability space.

The probability measure P is constrained to have the following properties, which
axiomatize the intuitive notion of what probability means:

• P(�) = 1;
• P(F) ≥ 0, ∀F ∈ F; and
•

P

( ∞⋃
n=1

Fn

)
=

∞∑
n=1

P(Fn),

for all sequences {Fk; k = 1, 2, . . .} of elements of F satisfying Fm ∩ Fn =
∅, ∀ m 	= n.

That is, P is constrained to be non-negative, normalized, and countably additive.

2.2.2 Random variables

The probability space is a useful abstraction that allows us to think of a chance
mechanism underlying more concrete, observable phenomena that we wish to
model as being random. Such concrete things can be modeled as being random
variables.

Mathematically, a random variable is defined to be a measurable mapping from the
sample space � (endowed with the event class F) to the real line IR (endowed with the
usual Borel σ -field B).1 That is, X : � → IR is a random variable if

X−1(B) ∈ F , ∀ B ∈ B, (2.1)

where X−1(B) denotes the pre-image under X of B : {ω ∈ �|X (ω) ∈ B}.
The measurability of X assures that probabilities can be assigned to all Borel subsets

of IR via the obvious assignment:

PX (B) = P
(

X−1(B)
)

, ∀ B ∈ B. (2.2)

In this way, X induces a probability measure PX on (IR,B) so that (IR,B, PX ) is also
a probability space. Once PX is known, the structure of the underlying probability
space (�,F , P) is irrelevant in describing the probabilistic behavior of the random
variable X.

1 Recall that the Borel σ -field in IR is the smallest σ -field that contains all intervals. This is a natural event
class to consider on the real line, since the intervals, their complements, unions, and intersections, are the
sets of most interest in the context of describing the behavior of observed real phenomena.
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8 Probabilistic framework

The information contained in the probability measure PX is more succinctly
described in terms of the cumulative probability distribution function (cdf) of X,

defined as

FX (x) = P(X ≤ x) = PX ((−∞, x]), x ∈ IR. (2.3)

Either of the two functions FX or PX determines the other.
The family of all cdf’s is the set of all non-decreasing, right-continuous functions with

left limit zero and right limit one. That is, all cdf’s satisfy these properties; and, given
any function with these properties, one can construct a random variable having that
function as its cdf. Random variables are classified according to the nature of their cdf’s.
Two distinct types of interest are: continuous random variables, whose cdf’s are abso-
lutely continuous functions; and discrete random variables, whose cdf’s are piecewise
constant.

It is sometimes of interest to generalize the notion of a random variable slightly to
permit the values ±∞ in the range of the random variable. To preserve measurability,
the sets of outcomes in � for which the variable takes on the values +∞ and −∞
must be in F . This generalization of a random variable is known as an extended random
variable.

2.2.3 Expectation

The cdf of a random variable completely describes its probabilistic behavior. A coarser
description of this behavior can be given in terms of the expected value of the random
variable.

A simple random variable is one taking on only finitely many values. The expected
value of a simple random variable X taking on the values x1, x2, . . ., xn, is defined as

E{X} =
n∑

k=1

xk P(Fk), (2.4)

where Fk = {X = xk}. The expected value of a general non-negative random variable
X is defined as the (possibly infinite) value

E{X} = sup
{simple Y |P(Y≤X)=1}

E{Y }. (2.5)

The expected value of an arbitrary random variable is defined if at least one of the
non-negative random variables, X+ = max{0, X} and X− = (−X)+, has a finite
expectation, in which case

E{X} = E{X+} − E{X−}. (2.6)

Otherwise E{X} is undefined. The interpretation of E{X} is as the average value of X,

where the average is taken over all values in the range of X weighted by the probabilities
with which these values occur.
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2.2 Basic setting 9

When E{X} exists, we write it as the integral∫
�

X (ω)P(dω) =
∫

�

XdP. (2.7)

If E{|X |} < ∞, we say that X is integrable.
The simplest possible non-trivial random variable is the indicator function of an

event, say F, which is defined as

1F (ω) =
{

1 ω ∈ F
.

0 ω /∈ F
(2.8)

Since we have E{1F } = P(F), it follows that knowledge of expectations of all random
variables is equivalent to knowledge of the probability distribution P. For an event F
and a random variable X whose expectation exists, we write

E{X1F } =
∫

F
X (ω)P(dω) =

∫
F

XdP. (2.9)

The integral (2.7) is a Lebesgue–Stieltjes integral, and it equals the Lebesgue–
Stieltjes integral ∫

IR
x PX (dx), (2.10)

which in turn equals the Riemann–Stieltjes integral∫ ∞

−∞
xdFX (x), (2.11)

whenever this integral converges. For a continuous random variable we thus have

E{X} =
∫ ∞

−∞
x fX (x)dx, (2.12)

where fX (x) = dFX (x)/dx is the probability density function (pdf) of X. Similarly, for
a discrete random variable X taking the values x1, x2, . . ., we have

E{X} =
∞∑

k=1

xk pX (xk), (2.13)

where pX (x) = P(X = x) is the probability mass function (pmf) of X.

If X is a random variable and g is a measurable function from (IR,B) to (IR,B),

then the composite function Y = g(X) is also a random variable, and its expectation
(assuming it exists) is given by

E{Y } =
∫

�

g(X (ω))P(dω) =
∫

IR
g(x)PX (dx). (2.14)

(The right-hand integral also must equal
∫

IR y PY (dy), of course.) The following
quantities are of interest.
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10 Probabilistic framework

• The moments of a random variable:

E{Xn}, n = 1, 2, . . . (2.15)

The first moment (which is the expected value) is called the mean of X.

• The central moments of a random variable:

E
{
(X − E{X})n}

, n = 1, 2, . . . (2.16)

The second central moment is the variance of X.

• The function MX (t) = E{et X } for t complex, which is known as the moment gener-
ating function if t ∈ IR, and the characteristic function if t = iu with i = √−1 and
u ∈ IR. The characteristic function is sometimes written as φX (u) = MX (iu). Note
that PX and φX form a unique pair.

A useful result involving expectations of functions of random variables is Jensen’s
inequality:

E{g(X)} ≥ g (E{X}), (2.17)

which holds for convex functions g such that the left-hand side exists. If g is strictly
convex, then the inequality in Jensen’s inequality is strict unless X is almost surely
constant.

2.2.4 Radon–Nikodym derivatives

Suppose P and Q are two probability measures on a measurable space (�,F). Then,
we have the following theorems.

• Lebesgue decomposition theorem. There exists a random variable f (unique up to sets
of P-probability zero), and an event H satisfying P(H) = 0, such that

Q(F) =
∫

F
f dP + Q(H ∩ F), ∀ F ∈ F . (2.18)

We say that Q is absolutely continuous with respect to P (or that P dominates Q)
if P(F) = 0 implies Q(F) = 0. We write Q 
 P. If Q 
 P and P 
 Q, we say
that P and Q are equivalent and we write P ≡ Q.

A trivial corollary to the Lebesgue decomposition theorem is the following.

• Radon–Nikodym theorem. Suppose Q 
 P. Then there exists a random variable f
such that

Q(F) =
∫

F
f dP, ∀ F ∈ F . (2.19)

The function f appearing in (2.19) is called the Radon–Nikodym derivative of Q
with respect to P, and we write

f (ω) = dQ

dP
(ω). (2.20)
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