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Introduction

The aim of this book is to introduce and at the same time to survey some
of the topics of singularity theory which study singularities by means of
differential forms. Here differential forms associated with a singularity are
the main subject as well as the main tool of investigation. Differential
forms provide the main discrete invariants of a singularity as well as
continuous invariants, i.e. they make it possible to study moduli of
singularities of a given type.

A singularity is a local object. It is a germ of an algebraic variety, or an
analytic space, or a holomorphic function. However, the majority of the
ideas and methods, used in the theory under consideration, originated in
the 'global' algebraic geometry. Therefore we first give a very brief and
schematic description of these ideas.

The idea of using differential forms and their integrals to define numeri-
cal invariants of algebraic varieties goes back to the classic writers of
algebraic geometry. It will be important for us that holomorphic and
algebraic forms can be used to calculate the singular cohomology of a
smooth algebraic variety over C. Developing the ideas of Atiyah and Hodge
(1955), Grothendieck (1966) showed that H\Xan, C) ~ Hl

DR(X/C), where
H^iX/C) is the De Rham cohomology. Grothendieck defined Hl

DR(X/C)
as the hypercohomology W(X9 Q'x) of the complex of sheaves of holo-
morphic differential forms on X. The comparison theorem enables us to
calculate the cohomology of the complement to a hypersurface in projective
space by means of the cohomology classes generated by rational differential
forms.

Algebraic differential forms have also proved to be useful in the study of
the monodromy of a family of complex varieties, using the Gauss-Manin
connection. The monodromy transformation is the transformation of fibres

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-62060-4 - Mixed Hodge Structures and Singularities
Valentine S. Kulikov
Frontmatter
More information

http://www.cambridge.org/9780521620604
http://www.cambridge.org
http://www.cambridge.org


xii Introduction

(or their homotopic invariants) of a locally trivial fibration corresponding
to a loop in the base. This notion appears when studying the multivalued
analytic function, where it corresponds to the notion of the covering or
sliding transformation. Very often the monodromy transformation appears
in the following situation. Let / : X —> S be a proper holomorphic map of
an analytic space to the disk in the complex plane. Let Xt be the fibre
f-\t), t€S,S'  = S\{0} and X' = f~l(Sf). By reducing the radius of S,
if necessary, we can make the fibration / ' : X' —> Sf a locally trivial C°°-
fibration. The monodromy transformation T associated with the loop in *S"
surrounding 0 is called the monodromy transformation of the family / The
action of the monodromy Ton the vector space H*(Xt) is obtained by the
parallel displacement of the cohomology classes in the fibres of the locally
constant fibration H= \JteS>Hl(Xu C) = R'f+Cx'. Grothendieck also
defined the relative De Rham cohomology sheaves J$l

DR(X/S) ~
Uff^(Q'XfS). If / : X —• S is a smooth proper morphism of algebraic
varieties/C, then from Grothendieck's theorem it follows the existence
of the canonical isomorphism of coherent analytic sheaves
Jgl

DR(X/S)m ~ #7* a n (C) ®c t^s*. The presence of the locally constant
sheaf H = i?'/*(C) in ^l

DR(X/S) defines a topological connection on the
sheaf J¥l

DR(X/S). Katz and Oda (1968) gave an algebraic definition of the
canonical connection (the Gauss-Manin connection) on the sheaves
J$l

DR(X/S) such that the sheaves of its horizontal sections are 7?'/*(C).
They calculated this connection explicitly and showed that it reduces to the
definition orginally given by Manin (1958) for the case in which X/S is an
algebraic curve over the field of functions.

The family of varieties Xt defined by the morphism /degenerates at the
point 0 G S, and the Gauss-Manin connection has a singularity at the point
0. This singularity is regular. The notion of a regular connection generalizes
the classical notion of a differential equation with a regular singular point,
and is the subject of Deligne's book [Dl]. Katz gave an algebraic proof of
the regularity of the Gauss-Manin connection (1970). Analytic proofs were
given by Griffiths (1971) and by Deligne [Dl]. The regularity theorem is
related to the monodromy theorem. When the space X as well as all fibres
Xu t ^ 0, is smooth, the monodromy theorem states that T is quasi-
unipotent on H*(Xt, Q), i.e. there exist positive integers A: and TV such that
(Tk — \)N = 0. There are several proofs of this basic theorem (Clemens
1969; Katz 1971; Griffiths & Schmid 1975). Many of the characteristic
features of the degenerate family / : X —> S become apparent in the proper-
ties of the monodromy. The monodromy of the family / is closely
connected with the mixed Hodge structure (MHS) on the cohomology
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Introduction xiii

H*(X0) and H*(Xt). The Hodge structure and the period map of a family
of algebraic varieties defined by the Hodge structure on the cohomology of
fibres H*(Xt) are the second most important notions used in this book.

The concept of a pure Hodge structure is a formalization of the structure
of the cohomology groups of a compact Kahler manifold. From the theory
developed by Hodge in the 1930s it follows that Hn(X, C) =
(&p+q=nH

p'q, HP>i = Hq'p, where the cohomology vector space is identi-
fied with the vector space of harmonic forms, and harmonic forms, and
consequently the cohomology, can be decomposed into the direct sum of
components of the type (/?, q). Under a variation of a variety X'm a family
Xt the variation of subspaces Hp>q(Xt) is not complex analytic. For this
reason it is more convenient to study the Hodge filtration
FpHn(X, C) = © r ^p / / r w ~ r , which does depend analytically on the
parameter t. One can give an equivalent definition of the Hodge structure
in terms of the Hodge filtration. Using the isomorphism
Hn(X, C) ~ H^R(X)9 we can express the Hodge filtration in terms of the
stupid (obvious) filtration a^pQ'x = {0 —> Q% —> Q^+ 1 —•...} on the
De Rham complex. One of Griffiths's discoveries [Gr] was that the Hodge
filtration is related to the pole order filtration: if co has a pole of order not
greater than k + 1 along a non-singular projective variety X, then the
residue Resa> is a sum of forms of the type (/?, q) with q ^ k. This gives a
purely algebraic definition of the Hodge filtration.

The theory of MHS developed by Deligne [D2, D3] is used more and
more. The definition of the MHS includes, besides a decreasing Hodge
filtration F\ an increasing weight filtration W. Deligne showed that the
cohomology of any algebraic variety (possibly non-proper and singular)
has a natural MHS. The MHS also appears in investigations of degenera-
tions of algebraic varieties. Let a morphism f:X—>S define a family of
non-singular projective varieties over the punctured disk S\ and let
ATo = / ~ 1 ( 0 ) be the degenerate fibre. Schmid [Sm] and Steenbrink [SI]
investigated the question of what happens with the Hodge structure on
Hn(Xt, Z), when t is limited to the point 0. The limit object appears to be
a MHS. The Hodge filtration of the limit MHS is in a sense the limit of the
Hodge filtration on Hn(Xt), and the weight filtration is related to the
monodromy.

The study of period maps goes back to the investigations of Abel and
Jacobi on integrals of algebraic functions. A tempestuous development of
the theory of periods of integrals begins after Griffiths's papers (1968).
Griffiths studied the properties of integrals in terms of the notions of the
period matrix space and the period map which he introduced. Let us
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xiv Introduction

consider a family Xt of non-singular projective varieties depending on a
parameter t €  S, and defined by a proper morphism / : X —> S. Using the
connection on the fibration H= \J tesHn(Xt), we can displace the Hodge
structures on Hn(Xt) to the cohomology space H = Hn (Xto) of a fixed
fibre. Considering the Hodge filtration FpHn{Xt) only, we can associate a
flag F'(t) in Hto every point t e S9

H = F\t) D F\t) D . . . D Fn+\i) = {0},

and hence obtain a point F(t) of the manifold of flags of given type. We
obtain the period map O: S —• J^. In coordinates the period map is given
by the periods of integrals (we have to choose a basis in the homology
space consisting of continuous families of cycles, and to define the
subspaces Fp(f) by bases of differential forms). In fact the definition of O
is not correct, since as t moves round a loop in S9 the identification of
Hn(Xto) with itself need not be the identity. So we have to consider either
a map O: S —» ^ of the universal cover of S, or a map O of S to a quotient
of .^"by some group.

Griffiths found that to first order, Fp is deformed only into the subspace
Fp~l. In terms of the Gauss-Manin connection this can be interpreted as
V F ^ c Q ^ F ^ " 1 (the horizontality theorem). In fact, Griffiths consid-
ered polarized Hodge structures on the primitive cohomology groups
Pn{Xt). He constructed the period matrix space D of all possible polarized
Hodge structures of given type, which is a submanifold of the flag manifold
distinguished by the Hodge-Riemann bilinear relations. It turns out that D
is an open homogeneous complex manifold, there is a naturally defined
properly discontinuous group T of analytic automorphisms of D such that
M = D/T is an analytic space, and then we obtain the period map
O: S -> M.

The period map can be used for the description of the moduli of
algebraic varieties. Here there are problems about Torelli-type theorems.
The global Torelli problem is the question of whether the period map
O: ^S —> M of the moduli space of algebraic varieties of a given type is
an embedding, i.e. whether the period matrix uniquely characterizes the
polarized algebraic variety. The affirmative answer to this question in the
case of algebraic curves is the usual Torelli theorem. The local Torelli
problem is one of deciding when the Hodge structure on H*(Xt, C)
separates points in the local moduli space (Kuranishi space) of Xt. The
infinitesimal Torelli problem is one of deciding when the tangent map dO
to the period map of the universal family is a monomorphism. The criterion
for the infinitesimal Torelli theorem to hold, which was obtained by
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Introduction xv

Griffiths (1968), stimulated the appearance of many papers on this theme.
We are not able in this introduction to go in detail into the problems
touched upon above, and we refer the reader to one of the surveys on the
theory of Hodge structures and periods of integrals, e.g. to [K-Ku] and
[B-Z], where one can find other references.

The aim of this book is to transfer the ideas and notions, described
above, to the local situation - to the case of isolated singularities of
holomorphic functions / : (Cw+1, 0) —> (C, 0). Again we have a morphism
/ : X —> 5, but now the fibres are local analytic hypersurfaces in an open
set X C Cn+l. In Chapter I we introduce the main personage of this book -
the meromorphic Gauss-Manin connection ^S of a singularity / a n d the
Brieskorn lattice 3%^ in it. We prove the regularity of the singularity of
the Gauss-Manin connection and the monodromy theorem. The discussion
in Chapter I is based on the classical papers of Brieskorn [Br] and
Malgrange [M]. In Chapter II we consider the limit MHS appearing on the
vanishing cohomology Hn{Xu C) of an isolated singularity / In the main
we follow the development as it occurred historically. Here the main
contribution comes from the papers of Steenbrink, Varchenko and Scherk.
Initially the MHS on the vanishing cohomology Hn(Xt) was constructed
by Steenbrink [S3] following a suggestion of Delinge. He used an embed-
ding of the morphism / : X —> S in a projective family Y —• S and the
limit MHS in the case of a degeneration of projective varieties [SI]. Then
Varchenko [V2, V3] proposed and accomplished the direct introduction of
the limit Hodge filtration F' on Hn(Xoo, C) (by means of asymptotics of
integrals), without using an embedding to a projective family. Following
this idea Scherk and Steenbrink [Sc-S] introduced the filtration F' in a
different way. They showed how the filtration F' is obtained from the
embedding of the Brieskorn lattice ^ ( 0 ) in the meromorphic connection.
Finally, in Chapter III we consider the period map of a //-const deformation
fy(x) of isolated singularities parametrized by points ye Y of a non-
singular manifold. The basis of this chapter is the papers of Saito [Sa8],
Karpishpan [Ka2] and Hertling [Hel, He2]. First we consider the period
map defined via embedding of Brieskorn lattices but not the one defined
via the limit MHS on Hn(Xt, C) as it should be according to the ideology
presented at the beginning of this introduction. Instead it is connected with
the following. Firstly, the limit MHS is determined by the embedding of
Brieskorn lattice, and, secondly, the limit MHS on Hn(Xt, C) is a rougher
invariant than the embedding ^ ( 0 ) c ~S is (because the filtration Fm is
defined not by the embedding 3%^ c *J& but by the embedding of adjoint
objects Gr'vJ^^ c Grv^M). We give examples of the explicit calculation
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xvi Introduction

of the period maps for the deformations of unimodular singularities and
prove the horizontality theorem and the infinitesimal Torelli theorem.

Now we give a detailed description of the contents of this book. In §1 of
Chapter I we recall the definition of the Milnor fibration [Mi] / : X —> S of
an isolated singularity / : (Cn + 1, 0) -» (C, 0). The restriction of /over the
punctured disk S' is a smooth locally trivial fibration. We introduce the
cohomological fibration H= \J tes'Hn(Xt, C) defining the topological
Gauss-Manin connection Vtop on the sheaf of sections 3@ =
H®0S' = Rnf*CX' ® @s'- In §2 we develop elements of the theory of
connections on locally free sheaves, the presentation of which one can find
in Deligne's book [Dl]. We pay special attention to the relation between V
and the dual to it connection V*. For Gauss-Manin connections, deter-
mined by the homological and cohomological fibrations, this leads to the
period matrix of a singularity / being a solution of system of linear
differential equations - the Picard-Fuchs equation of the singularity.

In §3 we introduce the De Rham cohomology sheaf J^^R(X/S) =
J%fn(f*Q'x,s), which is a natural extension of the sheaf j^? to the whole
disk. This sheaf establishes the connection between topology and algebra
and analysis, and reflects the analytic nature of the singularity / . §4
contains Brieskorn's calculation of the Gauss-Manin connection of the
sheaf ^ ( " 2 ) = J&£R(X/S) in terms of differential forms. This calculation
naturally leads to the sheaf ^ ( ~ 1 } = /*QJ f s /d( f *£2£^.) which contains
^ ( ~ 2 ) and is also an extension of the s h e a f s . We introduce the notion of
the meromorphic Gauss-Manin connection on the sheaf ^M =
3¥(~2>) <S> &s[t~1]. We also explain how to give a more conceptual descrip-
tion of the calculation of the Gauss-Manin connection on J^(~2) as a
connecting homomorphism in an exact cohomology sequence. In §5 the
main personage of this survey appears. This is the Brieskorn lattice ^ ( 0 ) ,
the third natural extension of the sheaf 3$ to the whole disk S. The lattice

is defined in terms of (n + l)-forms. The identification of M{0) and
x^ on *S" is realized by means of the Leray derivative (the Poincare

residue), co i-> co/df = Res [co/(f - t)]. All three lattices ^ ( " ° ,
i = 0, 1,2, are the terms of an increasing filtration on ,J&. The correlation
between them is contained in the diagram shown in (1.5.3.4). In §6 from
Malgrange's theorem, which claims that the periods of an «-form co have
the limit l im^o J K O ^ = ^' w e °btain a result of Sebastiani about the
absence of torsion in the sheaves J$f(~l\ and hence we obtain that these
sheaves are locally free ^ -modules of rank /a.

In §7 we recall the classical definition of a regular singular point of a
system of linear differential equations and Sauvage's theorem on the
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Introduction xvii

regularity of a simple singular point. We give the definition of a connection
with regular singularity and of the residue of such a connection wrt a
saturated lattice. In §8 we prove a fundamental theorem on the regularity of
the Gauss-Manin connection. We give two proofs of this important fact.
Firstly, we prove that periods of holomorphic forms give solutions of the
Picard-Fuchs equation. Then from Malgrange's theorem it follows that
horizontal sections of the Gauss-Manin connection have a moderate
growth. Secondly, using a resolution of the singularity and the sheaves of
differential forms with logarithmic poles, we construct a saturated lattice in
the meromorphic Gauss-Manin connection. In §9 from the regularity of
the Gauss-Manin connection we deduce the monodromy theorem claiming
that all eigenvalues of the monodromy are roots of unity. We give a
beautiful proof of this due to Brieskorn, based on the positive solution of
the seventh Hilbert problem. The part of the monodromy theorem concern-
ing the size of Jordan blocks is proved in (II.3.5.9). We obtain corollaries
of the monodromy theorem about the decomposition into series of the
periods of integrals of differential forms.

In §10 we consider non-isolated hypersurface singularities. Starting from
the construction of the Gauss-Manin connection as a connecting homo-
morphism in an exact sequence of complexes and in the spirit of [Sr], we
obtain a natural generalization of Brieskorn lattices 3@^ to the case of
non-isolated singularities. We give Van Straten's criterion on the absence
of torsion in the sheaves 3^^ and its application to the non-isolated
singularities with a one-dimensional critical set.

In Chapter II we consider the limit MHS appearing on the vanishing
cohomology Hn{Xu C) of an isolated hypersurface singularity. In §1 we
recall very briefly the necessary basic definitions from the theory of MHS
developed by Deligne. In §2 we introduce the limit MHS constructed by
Schmid [Sm] for a variation (H, JF') of pure Hodge structures F\ on a
vector space //, parametrized by points of the punctured disk *S". The limit
Hodge filtration F' appears on the zero fibre 2SItSS of the canonical
extension 3! of the sheaf 3& = H®<9S' to the point 0. The weight
filtration Wt is the weight filtration W(N) of the nilpotent operator
N — — (l/2jri)log Tu. In §3 we introduce the limit MHS on tfye vanishing
cohomology H = Hn(XO0, C) (X^ is the canonical fibre of the Milnor
fibration) according to Steenbrink. Steenbrink used an embedding of the
Milnor fibration X —> S to a projective family Y —• S. He introduced the
limit MHS on Hn(Yoc, C) using a resolution of singularities of the zero
fibre and the complex of relative differential forms with logarithmic poles.
We give Steenbrink's construction only very schematically, without going
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xviii Introduction

into technical details. The limit MHS on Hn(XOO9 C) constructed by
Steenbrink can be considered as a quotient of the MHS on Hn(YOO9 C).
From here it follows the symmetry of Hodge numbers of the MHS on
Hn(XO09 C), and also the monodromy theorem on the size of Jordan
blocks.

In §4 we consider the Hodge theory of a non-singular hypersurface Y in a
non-singular manifold X developed by Griffiths and extended by Deligne
to the case of divisors with normal crossings. This theory enables us to
calculate the cohomology of Yand of the complement X\Y by means of
differential forms on X with poles on Y9 and also relates the Hodge
filtration F' to the pole order filtration P\ When Y has singularities, the
filtrations F' and P' do not, generally, coincide [Kal, D-Di]. We apply this
theory for the description of Hn(Xt), where the hypersurface Xt c X is
the fibre of the Milnor fibration. The relative variant of this theory enables
us to obtain a natural extension 3@x of the sheaf 3$ to S. Then 3$x is
described as the cohomology sheaf 3$x = 3¥n+l(K\ d) of the bicomplex
(K\ di, d2), the terms of which are differential forms with poles, and the
degrees are defined by the order of a differential form and the order of its
pole. In the bicomplex K" the Poincare complex and the Koszul complex
are intertwined, and its differentials are exterior differentiation di = d of
differential forms and exterior multiplication by the form df. The Gauss-
Manin connection and the Hodge filtration F' on 3%x are defined in terms
of this bicomplex. In fact 3&x is a D-module, or a differential system,
which appears in the papers of Pham [Phi, Ph2], Scherk and Steenbrink
[Sc-S]. The study of this is extended in the papers of M. Saito [Sal-SalO]
in the frames of the theory of D-modules and of the 'monstrous' theory of
mixed Hodge modules developed by him. This latter theory raises the level
of abstractness by at least one more order, and moves further from the soil,
in which all this began to grow. The 'new' homological algebra, derived
cathegories, perverse sheaves, the Riemann-Hilbert correspondence, etc.
are essentially used in it. Under Saito's influence the theory becomes more
and more abstract and technical. One of the aims of this book was not to
follow this line but to evolve the theory using the 'traditional' (i.e. habitual
to algebraic geometricians) language of sheaves, connections, spectral
sequences etc. and to avoid using the language of the theory of/^-modules,
the theory of mixed Hodge modules etc. This is possible because of the
following circumstance. As is shown in §5 the operator dt is invertibL
3%x, 5%x contains the Brieskorn lattice J^?(0) = Fn3@x as well as
canonical lattice S, i ^ ( 0 ) C 32 C 3VX- That is the pair JBf<°) c % <
tains all the information which is of interest to us. The localization oi

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-62060-4 - Mixed Hodge Structures and Singularities
Valentine S. Kulikov
Frontmatter
More information

http://www.cambridge.org/9780521620604
http://www.cambridge.org
http://www.cambridge.org


Introduction xix

differential system 3%x leads us to the classical frames of the mero-
morphic connection ^M = (33x\t)> and as is explained in the supplement
to §7, the pair 3%^ c SZ happily stands localization and removes to
^ # , 3&^ C 2? C *J&. All this enables us to work in the classical frames
of the meromophic connection ^M.

In §6 we study the structure of the meromorphic connection ^M, its
decomposition into the sum ^M = 0 a Qe of root subspaces of the operator
tdt, the K-filtration on ^S. We determine the isomorphism xp:
H^ S$ jtSZ = 0-i<a^oCa between the canonical fibre of the fibration H
and the zero fibre of the canonical lattice 3$ — V>~x^&, and it enables us
to introduce the MHS on Z/in terms of the lattice 5%.

In §7 we introduce the MHS on H = Hn(Xoo, C), according to Varch-
enko [V3] and Scherk and Steenbrink [Sc-S]. At first we define the limit
Hodge filtration F' according to Scherk and Steenbrink, who transformed
the approach of Varchenko and gave the definition of F' in terms of the
differential system 3%x and the embedding 3%{G) c J^7, and then we define
F' according to Varchenko. Such an order of exposition is connected with
the fact that, in our opinion, the construction of Scherk and Steenbrink has
genetically a more natural motivation. In the beginning we observe the
sequence of steps leading to the construction of F" by Scherk and
Steenbrink.

In §8 we study the main discrete invariant of a hypersurface singularity
- its spectrum Sp(/), and a more detailed invariant Spp(/) the set of
spectral pairs. To give Spp(/) is equivalent to giving Hodge numbers H^q.
The spectrum Sp(/) is a set of pi rational numbers a\, . . . , a^, where
oij — —(l/2jti)Xj are logarithms of the eigenvalues lj of the monodromy
T. It codes the relation between the semisimple part of the monodromy and
the limit Hodge filtration F\ We study the properties of spectrum. We
show that Sp(f) C (— 1, n) and that the spectrum is symmetric wrt the
centre of this interval (n — l) /2. We develop the techniques for the
calculation of the spectrum. We explain: how to find the spectrum of a
(semi)quasihomogeneous singularity; how to find the spectrum in terms of
the Newton filtration defined by the Newton boundary; and in particular,
how to find the negative part of spectrum, the degree of which,
Y^-Ka^o^a = Pg, is equal to the geometric genus of the singularity [S3];
how to find the spectrum of the join of isolated singularities, and in
particular, how the spectrum changes under adding squares of new
variables. This technique enables us to find spectra of all the simple, uni-
and bi-modal singularities, which we gather together in a table. Finally, we
study variations of MHS of families of hypersurface singularities. We deal
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xx Introduction

with this more widely in Chapter III, but in §8 we consider the behavior of
discrete invariants under deformations. We give the results of Varchenko
and Steenbrink on the semicontinuity of spectrum and on its stability under
//-const deformations. At the end of §8, following Steenbrink, we define the
spectrum of non-isolated singularities and give a theorem on the relation of
the spectrum of a singularity with a one-dimensional critical set and the
spectra of isolated singularities of its Iomdin series.

In §1 of Chapter III we begin to study //-const deformations fy(x) of
isolated singularities parametrized by the points ye Y of a non-singular
variety. We explain how to glue the objects, associated earlier with an
'individual' singularity, to a family parametrized by Y. In particular, we
obtain the family of Milnor fibrations X(y), the family of cohomological
fibrations H = (J H(y), the family of meromorphic connections
^Jg, — ®^C^, etc. In §2 we obtain the formula for differentiating wrt
parameter y geometric sections s[(o](t, y), defined by a holomorphic
(n + l)-form co = g(x, y)dx. The same formula is used for differentiating
the root components s(a), (5) of the geometric sections st^Ky) =
Y^p>-\s(w, P)(y)* I n the case of upper diagonal deformations of a quasi-
homogeneous singularity f{x) from this formula we obtain a formula for
decomposition of s(co, /3)(y) into Taylor series in degrees of y In §3 first
we define the period map <I>: Y —>H defined by the embedding of
Brieskorn lattices. For all Brieskorn lattices J$(°\y) we have inclusions
V> ~l D J%?{0)(y) 3 Vn~l. The period map takes a point y to the subspace
J^f(0)O)mod Vn~x in the finite-dimensional vector space V>~l/Vn~\ i.e.
to the point in the Grassman manifold II. Then we define the period map
O defined by the MHS on the vanishing cohomology. This period map
takes a point y to the Hodge filtration F(y) of the limit MHS, i.e. to the
point in the flag manifold. We give, following Hertling, explicit calcula-
tions of the period maps of universal families of unimodular singularities.
In §4 we calculate the tangent map of the period map and prove the
horizontality theorem and the infinitesimal Torelli theorem for the period
map O. We compare the period maps <E> and O of the miniversal //-const
deformation of a quasihomogeneous singularity. From this comparison it
follows that the Torelli theorem for the period map O in general is false.
Finally, in §5 we consider the 'global' Torelli problem. Varchenko intro-
duced the notion of the Picard-Fuchs singularity PFS(f) of a singularity /
in terms of framed Picard-Fuchs equations. Hertling reformulated this in
terms of embeddings of Brieskorn lattices. We interpret it as a point in the
quotient U/G\ of the period space by the group G\ C GL{Hj) of
automorphisms commuting with the monodromy. Then the Torelli problem
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Introduction xxi

for the family fy,y€  Y, concerns the injectivity of the map 4>i:
Y / ~ —• IT/Gi, where ' — ' i s the equivalence relation induced by the in-
equivalence of singularities. We give Hertling's results [Hel, He2].

The reader is expected to have the knowledge and training usual in
algebraic and analytic geometry. This includes knowledge of sheaf theory
and the technique of spectral sequences.

The list of references reflects the development of singularity theory. It
includes: firstly, the original papers of E. Brieskorn, B. Malgrange, J.H.M.
Steenbrink, J. Scherk, A.N. Varchenko, F. Fham, M. Saito, Ya. Karpishpan
and C. Hertling, directly connected with the considered topic; secondly,
some general papers on MHS and periods of integrals (P. Griffiths, P.
Deligne, W. Schmid); thirdly, some books and surveys [Mi, AGV, Phi, Dl,
Di3, B-Z]. Some other references are also included.

Now about numbering and cross-references in this book. Each of three
chapters is divided into sections, and each section is divided into subsec-
tions. In a subsection all claims, remarks and displayed formulae are
numerated successively in a uniform way by three numbers, the first of
which is the number of the section and the second the number of the
subsection. For example, the tag (1.3.2) means claim (or formula) 2 in
subsection 3 of section 1. To refer to a claim etc. we use three numbers
within a given chapter, and four numbers, the first of which is a roman
numeral, to refer to other chapters. Thus (II.7.5.2) refers the reader to claim
2 of subsection 5 of section 7 of chapter II.

The preparation of this book was partially supported by Grant. No. 95-
01-01575 from the Russian Foundation for Fundamental Research and
Grant No. 4373 from the INTAS.
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