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1

Basic crystallography

1.1 Introduction

In this chapter, we review the principles and basic tools of crystallography. A thor-
ough understanding of crystallography is a prerequisite for anybody who wishes to
learn transmission electron microscopy (TEM) and its applications to solid (mostly
inorganic) materials. All diffraction techniques, whether they use x-rays, neutrons,
or electrons, make extensive use of the concept ofreciprocal spaceand, as we shall
see repeatedly later on in this book, TEM is a unique tool for directly probing this
space. Hence, it is important that the TEM user become as familiar with reciprocal
space as withdirector crystal space.
This chapter will provide a soundmathematical footing for both direct and recip-

rocal space, mostly in the form ofnon-Cartesian vector calculus. Many textbooks
on crystallography approach this type of vector calculus by explicitly stating the
equations for, say, the length of a vector, in each of the seven crystal systems.
While this is certainly correct, such tables of equations do not lend themselves to
direct implementation in a computer program. In this book, we opt for a method
which is independent of the crystal system and which can be implemented readily
on a computer. We will introduce powerful tools for the computation of geometri-
cal quantities (distances and angles) in both spaces and for a variety of coordinate
transformations in and between those spaces.Wewill also discuss thestereographic
projection(SP), an important tool for the analysis of electron diffraction patterns
and crystal defects. The TEM user should be familiar with these basic tools.
Although many of these tools are available in commercial or public domain

software packages, we will discuss them in sufficient detail so that the reader
may also implement them in a new program. It is also useful tounderstandwhat
the various menu-items in software programs really mean. We will minimize to the
extent that it is possible the number of “black-box” routines used in this book. The
reader may download ASCII files containing all of the routines discussed in this
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2 Basic crystallography

book from thewebsite. All of the algorithms are written in standard Fortran-90,
and can easily be translated into C, Pascal, or any of the object-oriented languages
(C++, Java, etc.). The user interface is kept simple, without on-screen graphics.
Graphics output, if any, is produced in PostScript or TIFF format and can be viewed
on-screen with an appropriate viewer or sent to a printer. The source code can be
accessed at theUniformResource Locator (URL)http:/ /ctem.web.cmu.edu/ .

1.2 Direct space and lattice geometry

From a purely mathematical point of view, crystallography can be described asvec-
tor calculus in a rectilinear, but not necessarily orthonormal (or even orthogonal)
reference frame. A discussion of crystallographic tools thus requiresthat we define
basic vector operations in a non-Cartesian reference frame. Such operations are the
vector dot product, thevector cross product, the computation of the length of a
vector or the angle between two vectors, and so on.

1.2.1 Basis vectors and unit cells

A crystal structureis defined as a regular arrangement of atoms decorating a pe-
riodic, three-dimensionallattice. The lattice is defined as the set of points which
is created by allinteger linear combinations of threebasis vectorsa,b, andc. In
other words, the latticeT is the set of all vectorst of the form:

t = ua+ vb + wc,

with (u, v, w) being an arbitrary triplet of integers. We will often denote the basis
vectors by the single symbolai , where the subscripti takes on the values 1,2, and 3.
We will restrict ourselves toright-handedreference frames; i.e. the mixed product
(a× b) · c > 0. Thelattice vectort can then be rewritten as

t =
3∑

i =1
uiai , (1.1)

with u1 = u,u2 = v, andu3 = w. This expression can be shortened even further by
introducing the following notation convention, known as theEinstein summation
convention: If a subscript occurs twice in the same term of an equation, then
a summation is implied over all values of this subscript and the corresponding
summation sign need not be written.In other words, since the subscripti occurs
twice on the right-hand side of equation (1.1), we can drop the summation sign and
simply write

t = uiai . (1.2)
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a

β α

γ

c

b

Fig. 1.1. Schematic representation of a general (triclinic or anorthic) unit cell.

The length of a vector is represented by the norm symbol| |; i.e. the length of
the basis vectorai is |ai |with |a1| ≡ a, |a2| ≡ b, and|a3| ≡ c. The angles between
the basis vectors are represented by the Greek lettersα, β, andγ , as indicated in
Fig. 1.1. The six numbers{a, b, c, α, β, γ } are known as thelattice parametersof
the unit cell.
The lattice parameters can be used to distinguish between the sevencrystal

systems:

{a, b, c, α, β, γ } a 	= b 	= c;α 	= β 	= γ triclinic or anorthic (a);{
a, b, c, π

2 , β, π
2

}
a 	= b 	= c;β 	= π

2 monoclinic (m);{
a, a, c, π

2 ,
π
2 ,
2π
3

}
a = b 	= c hexagonal (h);

{a, a, a, α, α, α} a = b = c;α 	= π
2 rhombohedral (R);{

a, b, c, π
2 ,

π
2 ,

π
2

}
a 	= b 	= c orthorhombic (o);{

a, a, c, π
2 ,

π
2 ,

π
2

}
a = b 	= c tetragonal (t);{

a, a, a, π
2 ,

π
2 ,

π
2

}
a = b = c cubic (c).

It is a basic property of a lattice that all lattice sites are equivalent. In other words,
any site can be selected as theorigin. The seven crystal systems give rise to seven
primitive lattices, since there is only one lattice site per unit cell. We can place
additional lattice sites at the endpoints of so-calledcentering vectors; the possible
centering vectors are:

A =
(
0,
1

2
,
1

2

)
;

B =
(
1

2
,0,
1

2

)
;

C =
(
1

2
,
1

2
,0

)
;

I =
(
1

2
,
1

2
,
1

2

)
.

A lattice with an extra site at theA position is known as anA-centeredlattice, and
a site at theI position gives rise to abody-centeredor I-centeredlattice. When the
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Monoclinic  (mP)
Triclinic  (aP)

Orthorhombic  (oP) Orthorhombic  (oC) Orthorhombic  (oI)

Tetragonal  (tP) Tetragonal  (tI)

120

Hexagonal  (hP)

Orthorhombic  (oF)

Rhombohedral  (R)

Monoclinic  (mC)

Cubic  (cP) Cubic  (cI) Cubic  (cF)

Fig. 1.2. The 14 Bravais lattices and their centering symbols.

three positions,A,B, andC, are simultaneously present as additional lattice sites,
the lattice isface centeredor F-centered.
When we combine these centering operations with each of the seven primitive

unit cells, seven additional lattices are found. The 14Bravais lattices, first derived
by August Bravais in 1850 [Bra50], are shown in Fig. 1.2. They are commonly rep-
resented by two-letter symbols, the crystal system symbol followed by a centering
symbol:aP(primitive anorthic),mP(primitivemonoclinic),mC(C-centeredmono-
clinic),R(primitive rhombohedral),hP(primitive hexagonal),oP(primitive ortho-
rhombic),oC (C-centered orthorhombic),oI (body-centered orthorhombic),oF
(face-centered orthorhombic),tP (primitive tetragonal),tI (body-centered tetrago-
nal),cP (primitive cubic),cI (body-centered cubic), andcF (face-centered cubic).
The choice of the lattice parameters of the Bravais lattices follows the conventions
listed in theInternational Tables for Crystallography, Volume A[Hah96].
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The vectort in equation (1.1) represents adirection in the crystal lattice. It is
usually represented by the symbol [uvw] (square brackets, no commas between the
components). Negative components are denoted by a minus sign above the corre-
sponding component(s), e.g. [ūvw̄] for the vector with components (−u, v, −w).
Note that there is no agreement in the literature on how to pronounce the symbol
[ūvw̄]; some researchers will pronounce thebar before the number (i.e. bar u, v,
bar w), while others will pronounce it following the number (i.e. u bar, v, w bar).
Since one is referring to the negative of a number, and usually this is pronounced as
“negative u”, or “minus u”, it makes sense to pronounce the barbeforethe number
to which it applies.†

The position of an atom inside the unit cell is described by the position vectorr :

r = xa+ yb + zc =
3∑

i=1
riai = riai ,

where we have againmade use of the summation convention. The numbers (x, y, z)
are real numbers between 0 and 1, and are known asfractional coordinates.

1.2.2 The dot product and the direct metric tensor

It is important that we have a method of computing distances between atoms and
angles between interatomic bonds in the unit cell. Distances in a Cartesian ref-
erence frame are typically computed by means of Pythagoras’ Theorem: the dis-
tanceD between two pointsP andQ with position vectorsp = (p1, p2, p3) and
q = (q1, q2, q3) is given by the length of the vector connecting the two points,
or by the square root of the sum of the squares of the differences of the co-
ordinates, i.e.

D =
√
(p1− q1)2+ (p2− q2)2+ (p3− q3)2.

In anon-Cartesian reference frame (andalmost all crystallographic reference frames
are non-Cartesian), this equation is no longer valid and it must be replaced by a
more general expression that we shall now derive.
The dot product of two vectorsp andq can be defined as the product of the

lengths ofp andqmultiplied by the cosine of the angleθ between them, or

p · q ≡ |p||q| cosθ.

p

q|p|cosθ

θ (1.3)

† This is merely the author’s personal preference. The choice is really up to the reader.
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This definition does not depend on a particular choice of reference frame, so it
can be taken as a general definition of the dot product. The dot product can be
interpreted as the projection of one vector onto a second vector, multiplied by the
length of the second vector. If the two vectors are identical, we find (sinceθ = 0)

p · p = |p|2,
from which we derive

|p| = √
p · p.

If the vectorp has componentspi with respect to the crystal basis vectorsai , we
have†

|p| = √
piai · pja j = √pi (ai · a j )pj


=

√√√√ 3∑
i =1

3∑
j =1

pi (ai · a j )pj


.

We see that thelengthof a vector depends on all the dot products between the basis
vectors (remember that there are two summations on the right-hand side of this
equation!). Thequantitiesai · a j areof fundamental importance for crystallographic
computations, and they are commonly denoted by the symbol

gi j ≡ ai · a j = |ai ||a j | cosθi j . (1.4)

The nine numbersgi j form a 3× 3 matrix which is known as thedirect metric
tensor. From Fig. 1.1, we find that this matrix is given explicitly by

gi j =

a · a a · b a · c
b · a b · b b · c
c · a c · b c · c


 =


 a2 abcosγ accosβ

abcosγ b2 bccosα
accosβ bccosα c2


. (1.5)

Thematrixgi j issymmetric‡ sincegi j = gji . It hasonly six independent components
corresponding to the six lattice parameters{a, b, c, α, β, γ }. In other words, the
metric tensor contains the same information as the set of lattice parameters, but in a
form that allowsdirect computation of the dot product between two vectors. Explicit
expressions for all seven metric tensors are listed in Appendix A1 on page 661.

Example 1.1 A tetragonal crystal has lattice parameters a= 1
2 nm and c= 1nm.

Compute its metric tensor.

† The indicesi and j are known asdummy indices; it does not really matter which symbols we use for such
summation indices, as long as we use them consistently throughout the computation.

‡ In this textbook, the first subscript ofgi j , or any other matrix, will always refer to the rows and the second
subscript to the columns ofg.
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Answer:Substitution of these values into (1.5) results in

gi j =

14 0 0
0 1

4 0
0 0 1


.

Note that the units of the metric tensor elements are (nanometer)2, but for brevity
we usually drop them until the end of a computation.

The length of the vectorp can now be rewritten as

|p| = √
pi gi j pj .

The argument of the square root contains a double summation overi and j . Sincei
is the row-index of the matrixgi j , and since we can only multiply matrices that are
conformable,† we find that the vector componentspi must be written in row form,
while the componentspj must be written in column form, as follows:

|p| =

√√√√√[ p1 p2 p3]


 a2 abcosγ accosβ

abcosγ b2 bccosα
accosβ bccosα c2




 p1

p2
p3


.

The dot product between two vectorsp andq is given by

p · q = piai · qja j = pi gi j qj , (1.6)

or explicitly

p · q = [ p1 p2 p3]


 a2 abcosγ accosβ

abcosγ b2 bccosα
accosβ bccosα c2




q1

q2
q3


.

The angleθ between the two vectors is given by (from equation 1.3):

θ = cos−1
(
p · q
|p||q|

)
= cos−1

(
pi gi j qj√

pi gi j pj
√

qi gi j qj

)
. (1.7)

Example 1.2 For the tetragonal crystal in Example 1.1 on page 6, compute the
distance between the points( 12,0,

1
2) and( 12,

1
2,0).

Answer:The distance between two points is equal to the length of the vector con-
necting them, in this case( 12 − 1

2,0− 1
2,
1
2 − 0)= (0, −1

2,
1
2). Using the tetragonal

† A matrix A is said to be conformable with respect toB if the number of columns inA equals the number of
rows inB. Matrix multiplication is only defined for conformable matrices.



8 Basic crystallography

metric tensor derived previously, we find for the length of this vector:

|p| =

√√√√√√
[
0

−1
2

1

2

]14 0 0
0 1

4 0
0 0 1




 0−12

1
2


;

=

√√√√√√
[
0

−1
2

1

2

] 0−18
1
2


 =

√
5

4
nm.

Example 1.3 For the tetragonal unit cell of Example 1.1 on page 6, compute the
dot product and the angle between the vectors[120] and[311].

Answer: The dot product is found from the expression for the metric tensor, as
follows:

t[120] · t[311] = [1 2 0]

14 0 0
0 1

4 0
0 0 1




31
1


 = [1 2 0]



3
4
1
4
1


 = 5

4
nm2.

The angle is found by dividing the dot product by the lengths of the vectors,
|[120]|2 = 5

4 nm2 and|[311]|2 = 14
4 nm2, from which we find

cosθ =
5
4√
14
4

√
5
4

= 5√
70

→ θ = 53.30◦.

Example 1.4 The angle between two direct space vectors can be computed in a
single operation, instead of using the three individual dot products described in
the previous example. Derive a procedure for computing the angleθ based on a
2× 3matrix containing the two vectorsp andq.

Answer:Consider the following formal relation:(
p
q

)
· (p q

) =
(
p · p p · q
q · p q · q

)
.

The resulting2× 2matrix contains all three dot products needed for the compu-
tation of the angleθ , and only one set of matrix multiplications is needed. We can
apply this short cut to the previous example:

(
1 2 0
3 1 1

) 1
4 0 0
0 1

4 0
0 0 1




1 3
2 1
0 1


 =

(
5
4

5
4

5
4

14
4

)
,

from which we find the same angle ofθ = 53.30◦.
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Note that these equations are valid in every rectilinear coordinate frame† and,
therefore, in every crystal system. Explicit expressions for distances and angles
in the seven reference frames are listed in Appendix A1 on pages 663–664. For a
Cartesian, orthonormal reference frame, the metric tensor reduces to the identity
matrix. Indeed, the Cartesian basis vectorsei have unit length and are orthogonal
to each other; therefore, the metric tensor reduces to

gi j =

e1 · e1 e1 · e2 e1 · e3
e2 · e1 e2 · e2 e2 · e3
e3 · e1 e3 · e2 e3 · e3


 =


1 0 0
0 1 0
0 0 1


 ≡ δi j , (1.8)

where we have introduced theKronecker deltaδi j , which is equal to 1 fori = j
and 0 fori 	= j . Substitution into equation (1.6) results in

p · q = pi δi j qj = pi qi = p1q1+ p2q2+ p3q3,

which is the standard expression for the dot product between two vectors in a
Cartesian reference frame. We will postpone until Section 1.9 a discussion of how
to implement the metric tensor formalism on a computer.

1.3 Definition of reciprocal space

In the previous section, we have described how we can compute distances be-
tween atoms in a crystal and angles between the bonds connecting those atoms. In
Chapter 2, we will see thatdiffractionof electrons is described by theBragg equa-
tion, which relates the diffraction angle to the electron wavelength and the spacing
between crystal planes.Wemust, therefore, devise a tool that will enable us to com-
pute this spacing between successive lattice planes in an arbitrary crystal lattice.
We would like to have a method similar to that described in the previous section,
ideally one with equations identical in form to those for the distance between atoms
or the dot product between direction vectors. It turns out that such a tool exists and
we will introduce thereciprocal metric tensorin the following subsections.

1.3.1 Planes and Miller indices

The description of crystal planes has a long history going all the way back toReńe-
Juste Häuy [Haü84] who formulated theSecond Law of Crystal Habit, also known
as the law of simple rational intercepts. This law promptedMiller to devise a system
to label crystal planes, based on their intercepts with the crystallographic reference
axes. Although the so-calledMiller indiceswere used by several crystallographers
before Miller, they are attributed to him because he used them extensively in his
book and teachings [Mil39] and because he developed the familiarhkl notation.

† They are also valid for curvilinear coordinate frames, but we will not make much use of such reference frames
in this book.
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a

c

b

1

1/ 3
1/ 2

Fig. 1.3. Illustration of the determination of the Miller indices of a plane.

The Miller indices of a plane in an arbitrary crystal system are obtained in the
following way.

(i) If the plane goes through the origin, then displace it so that it no longer contains the
origin.

(ii) Determine the intercepts of the plane with the three basis vectors. Call those intercepts
s1, s2, ands3. The intercepts must be measured in units of the basis vector length. For
the plane shown in Fig. 1.3, these valuesares1 = 1, s2 = 1

2, ands3 = 1
3. If a plane is

parallel to one or more of the basis vectors, then the corresponding intercept value(s)
must be taken as∞.

(iii) Invert all three intercepts. For the plane in the figurewe find1s1 = 1, 1s2 = 2, and1s3 = 3.
If one of the intercepts is∞, then the corresponding number is zero.

(iv) Reduce the three numbers to the smallestpossible integers (relative primes). (This is
not necessary for the example above.)

(v) Write the three numbers surrounded by round brackets, i.e. (123). This triplet of num-
bers forms theMiller indicesof the plane.

In general, the Miller indices of a plane are denoted by the symbol (hkl). As for
directions, negative indices are indicated by abar or minus sign written above the
corresponding index, e.g. (1̄23̄). Although Miller indices were defined as relative
primes, we will see later on that it is often necessary to consider planes of the type
(nh nk nl), wheren is a non-zero integer. All planes of this type are parallel to
the plane (hkl), but for diffraction purposes they are not the same as the plane
(hkl). For instance, the plane (111) is parallel to the plane (222), but the two planes
behave differently in a diffraction experiment.

1.3.2 The reciprocal basis vectors

It is tempting to interpret the triplet of Miller indices (hkl) as the components
of a vector. A quick inspection of the orientation of the vectorn = ha+ kb + lc
with respect to the plane (hkl) in an arbitrary crystal system shows that, except
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(110) (110)

[110] // normal

[110]

a a

b

b

normal

(a) (b)

Fig. 1.4. (a) In a cubic (square) lattice, a direction vector [110] is normal to the plane with
Miller indices (110); this is no longer the case for a non-cubic system, as shown in the
rectangular cell (b).

in special cases, there is no fixed relation between the two (see Fig. 1.4). In other
words, when the Miller indices are interpreted as the components of a vector with
respect to the direct basis vectorsai , we do not find a useful relationship between
this vector and the plane (hkl). We must then ask the question: can we find three
new basis vectorsa∗,b∗, andc∗, related to the direct basis vectorsai , such that
the vectorg = ha∗ + kb∗ + lc∗ conveys meaningful information about the plane
(hkl)? It turns out that such a triplet of basis vectors exists, and they are known as
thereciprocal basis vectors. We will distinguish them from the direct basis vectors
by means of an asterisk,a∗

j .
The reciprocal basis vectors can be derived from the following definition:

ai · a∗
j ≡ δi j , (1.9)

whereδi j is the Kronecker delta introduced in equation (1.8). This expression fully
defines the reciprocal basis vectors: it states that the vectora∗must be perpendicular
to bothb and c (a∗ · b = a∗ · c = 0), and thata∗ · a = 1. The first condition is
satisfied ifa∗ is parallel to the cross product betweenb andc:

a∗ = K (b × c),

whereK is a constant. The second condition leads to the value ofK :

a · a∗ = Ka · (b × c) = 1,
from which we find

K = 1

a · (b × c)
≡ 1



,

where
 is the volume of the unit cell formed by the vectorsai .
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A similar procedure for the remaining two reciprocal basis vectors then leads to
the following expressions:

a∗ = b × c
a · (b × c)

;

b∗ = c× a
a · (b × c)

;

c∗ = a× b
a · (b × c)

.




(1.10)

We define thereciprocal latticeT ∗ as the set of end-points of the vectors of the
type

g = ha∗ + kb∗ + lc∗ =
3∑

i =1
gia∗

i = gia∗
i ,

where (h, k, l ) are integer triplets. This new lattice is also known as thedual lattice,
but in the diffraction world we prefer the namereciprocal lattice. We will now
investigate the relation between the reciprocal lattice vectorsg and the planes with
Miller indices (hkl).
Wewill look for all the direct space vectorsr with componentsri = (x, y, z) that

are perpendicular to the vectorg. We already know that two vectors are perpendic-
ular to each other if their dot product vanishes. In this case we find:

0= r · g = (riai ) ·
(
gja∗

j

) = ri
(
ai · a∗

j

)
gj .

We also know from equation (1.9) that the last dot product is equal toδi j , so

r · g = ri δi j gj = ri gi = r1g1+ r2g2+ r3g3 = hx + ky + lz = 0. (1.11)

The components of the vectorr must satisfy the relationhx + ky + lz = 0 if r is
to be perpendicular tog. This relation represents the equation of a plane through
the origin of the direct crystal lattice. If a plane intersects the basis vectorsai at
interceptssi , then the equation of that plane is given by [Spi68]

x

s1
+ y

s2
+ z

s3
= 1, (1.12)

where (x, y, z) is an arbitrary point in the plane. The right-hand side of this equation
takes on different values when we translate the plane along its normal, and, in
particular, is equal to zero when the plane goes through the origin. Comparing

hx + ky + lz = 0
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with

x

s1
+ y

s2
+ z

s3
= 0,

we find that the integersh, k, andl are reciprocals of the intercepts of a plane with
the direct lattice basis vectors. This is exactly the definition of theMiller indicesof
a plane! We thus find the fundamental result:

The reciprocal lattice vector g, with components (h, k, l ), is perpen-
dicular to the plane with Miller indices (hkl).

For this reason, a reciprocal lattice vector is often denoted with the Miller indices
as subscripts, e.g.ghkl.
Since the vectorg = gia∗

i is perpendicular to the plane with Miller indicesgi =
(hkl), the unit normal to this plane is given by

n = ghkl

|ghkl| .

The perpendicular distance from the origin to the plane intersecting the direct basis
vectors at the points1h , 1k , and

1
l is given by the projection of any vectort ending in

the plane onto the plane normaln (see Fig. 1.5). This distance is also, by definition,
the interplanar spacing dhkl. Thus,

t · n = t · ghkl

|ghkl| ≡ dhkl.

We can arbitrarily selectt = a
h , which leads to

t · ghkl = a
h

· (ha∗ + kb∗ + lc∗) = a
h

· ha∗ = 1= dhkl|ghkl|,

d

n

t

Fig. 1.5. The distance of a plane to the origin equals the projection of any vectort ending
in this plane onto the unit plane normaln.
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from which we find

|ghkl| = 1

dhkl
. (1.13)

The length of a reciprocal lattice vector is equal to the inverse of
the spacing between the corresponding lattice planes.

We thus find that every vectorghkl of the reciprocal lattice is parallel to the
normal to the set of planes with Miller indices (hkl), and the length ofghkl (i.e. the
distance from the point (h, k, l ) to the origin of the reciprocal lattice) is equal to
the inverse of the spacing between consecutive lattice planes. At this point, it is
useful to introduce methods for lattice calculations in the reciprocal lattice; we will
see that the metric tensor formalism introduced in Section 1.2.2 can also be applied
to the reciprocal lattice.

1.3.3 Lattice geometry in reciprocal space

We know that the length of a vector is given by the square root of the dot product
of this vector with itself. Thus, the length ofg is given by

1

dhkl
= |g| = √

g · g =
√(

gia∗
i

) · (gja∗
j

) =
√

gi
(
a∗

i · a∗
j

)
gj .

Again we find that the general dot product involves knowledge of the dot products
of the basis vectors, in this case the reciprocal basis vectors. We introduce the
reciprocal metric tensor:

g∗
i j ≡ a∗

i · a∗
j . (1.14)

Explicitly, the reciprocal metric tensor is given by:

g∗ =

a∗ · a∗ a∗ · b∗ a∗ · c∗

b∗ · a∗ b∗ · b∗ b∗ · c∗

c∗ · a∗ c∗ · b∗ c∗ · c∗


;

=

 a∗2 a∗b∗ cosγ ∗ a∗c∗ cosβ∗

b∗a∗ cosγ ∗ b∗2 b∗c∗ cosα∗

c∗a∗ cosβ∗ c∗b∗ cosα∗ c∗2


, (1.15)

where{a∗, b∗, c∗, α∗, β∗, γ ∗} are the reciprocal lattice parameters. Explicit expres-
sions for all seven reciprocal metric tensors are given in Appendix A1 on page 662.
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In Section 1.3.4, we will develop an easy way to compute the reciprocal basis
vectors and lattice parameters; for now the explicit equations in the appendix are
sufficient.

Example 1.5 Compute the reciprocal metric tensor for a tetragonal crystal with
lattice parameters a= 1

2 and c= 1.
Answer:Substitution of the lattice parameters into the expression for the tetragonal
reciprocal metric tensor in Appendix A1 yields

g∗
tetragonal

=

4 0 0
0 4 0
0 0 1


.

We can now rewrite the length of the reciprocal lattice vectorg as

1

dhkl
= |g| = √

g · g =
√

gi g∗
i j gj . (1.16)

The angleθ between two reciprocal lattice vectorsf andg is given by the standard
relation (equation 1.7):

θ = cos−1

 fi g∗

i j gj√
fi g∗

i j f j

√
gi g∗

i j gj


. (1.17)

Example 1.6 Compute the angle between the(120)and (311)plane normals for
the tetragonal crystal of Example 1.5.

Answer:Substitution of the vector components and the reciprocal metric tensor
into the expression for the angle results in

cosθ =
[1 2 0]


4 0 0
0 4 0
0 0 1




31
1




√√√√√[1 2 0]

4 0 0
0 4 0
0 0 1




12
0



√√√√√[3 1 1]


4 0 0
0 4 0
0 0 1




31
1




,

= 20√
20× 41 = 0.69843,

→ θ = 45.7◦.
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Example 1.7 Redo the computation of the previous example using the shorthand
notation introduced in Example 1.4.

Answer:The matrix product is given by

(
1 2 0
3 1 1

)4 0 0
0 4 0
0 0 1




1 3
2 1
0 1


 =

(
20 20
20 41

)
,

from which we find the same angle ofθ = 45.7◦.

Note that we have indeedmanaged to create a computational tool that is formally
identical to that used for distances and angles in direct space. This should come as
no surprise, since the reciprocal basis vectors are just another set of basis vectors,
and the equations for direct space must be valid foranynon-Cartesian reference
frame. The particular choice for the reciprocal basis vectors (see equation 1.9)
guarantees that they are useful for the description of lattice planes. In the next
section, we will derive relations between the direct and reciprocal lattices.

1.3.4 Relations between direct space and reciprocal space

We know that a vector is a mathematical object that exists independently of the
reference frame. This means that every vector defined in the direct lattice must also
have components with respect to the reciprocal basis vectors and vice versa. In this
section, we will devise a tool that will permit us to transform vector quantities back
and forth between direct and reciprocal space.
Consider the vectorp:

p = piai = p∗
j a

∗
j ,

wherep∗
j are the reciprocal space components ofp. Multiplying both sides by the

direct basis vectoram, we have

piai · am = p∗
j a

∗
j · am,

pi gim = p∗
j δ jm = p∗

m,

}
(1.18)

or

p∗
m = pi gim. (1.19)

It is easily shown that the inverse relation is given by

pi = p∗
mg∗

mi. (1.20)

We thus find thatpost-multiplication by the metric tensortransforms vector compo-
nents fromdirect space to reciprocal space, andpost-multiplicationby the reciprocal
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metric tensor transforms vector components from reciprocal to direct space. These
relations are useful because they permit us to determine the components of a direc-
tion vectort[uvw] with respect to the reciprocal basis vectors, or the components of
a plane normalghkl with respect to the direct basis vectors.

Example 1.8 For the tetragonal unit cell of Example 1.1 on page 6, write down
the reciprocal components of the lattice vector[114].

Answer:This transformation is accomplished by post-multiplication by the direct
metric tensor:

t∗
[114] = [1 1 4]


14 0 0
0 1

4 0
0 0 1


 =

[
1

4

1

4
4

]
.

In other words, the[114] direction is perpendicular to the(1 1 16)plane.

Nowwe have all the tools we need to express the reciprocal basis vectors in terms
of the direct basis vectors. Consider again the vectorp:

p = piai .

If we replacepi by p∗
mg∗

mi, then we have

p = p∗
mg∗

miai = p∗
ma

∗
m,

from which we find

a∗
m = g∗

miai , (1.21)

and the inverse relation

am = gmia∗
i . (1.22)

In other words,the rows of the metric tensor contain the components of the direct
basis vectors in terms of the reciprocal basis vectors, whereas the rows of the
reciprocal metric tensor contain the components of the reciprocal basis vectors
with respect to the direct basis vectors.
Finally, from equation (1.22) we find after multiplication by the vectora∗

k:

am · a∗
k = gmia∗

i · a∗
k,

δmk = gmig∗
ik .

}
(1.23)

In otherwords, thematrices representing the direct and reciprocalmetric tensors are
each other’s inverse. This leads to a simple procedure to determine the reciprocal
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basis vectors of a crystal:

(i) compute the direct metric tensor;
(ii) invert it to find the reciprocal metric tensor;
(iii) apply equation (1.21) to find the reciprocal basis vectors.

Example 1.9 For the tetragonal unit cell of the previous example, write down the
explicit expressions for the reciprocal basis vectors. From these expressions, derive
the reciprocal lattice parameters.

Answer:The components of the reciprocal basis vectors are given by the rows of
the reciprocal metric tensor, and thus

a∗
1 = 4a1;
a∗
2 = 4a2;
a∗
3 = a3.

The reciprocal lattice parameters are now easily found from the lengths of the ba-
sis vectors: a∗ = |a∗

1| = |a∗
2| = 4|a1| = 4× 1

2 = 2 nm−1, and c∗ = |a∗
3| = |a3| =

1 nm−1. The angles between the reciprocal basis vectors are all90◦.

1.3.5 The non-Cartesian vector cross product

The attentive reader may have noticed that we have made use of thevector cross
productin the definition of the reciprocal lattice vectors, without considering how
the cross product is defined in a non-Cartesian reference frame. In this section, we
will generalize the cross product to crystallographic reference frames.
Consider the two real-space vectorsp = p1a+ p2b + p3candq = q1a+ q2b +

q3c. The cross product between them is defined as

p × q ≡ sinθ |p| |q| z,

p

q
θ

p   q×

z (1.24)

whereθ is the angle betweenp andq, andz is a unit vector perpendicular to bothp
andq. The length of the cross product vector is equal to the area of the parallelogram
enclosed by the vectorsp andq. It is straightforward to compute the components
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of the cross product:

p × q = p1q1a× a+ p1q2a× b + p1q3a× c

+ p2q1b × a+ p2q2b × b + p2q3b × c

+ p3q1c× a+ p3q2c× b + p3q3c× c.

Since the cross product of a vector with itself vanishes, anda× b = −b × a, we
can rewrite this equation as:

p × q = (p1q2− p2q1)a× b + (p2q3− p3q2)b × c+ (p3q1− p1q3) c× a

= 
[(p2q3− p3q2)a∗ + (p3q1− p1q3)b∗ + (p1q2− p2q1) c∗], (1.25)

where we have used the definition of the reciprocal basis vectors (equation 1.10).
We thus find that the vector cross product between two vectors in direct space is
described by a vector expressed in the reciprocal reference frame! This is to be
expected since the vector cross product results in a vector perpendicular to the
plane formed by the two initial vectors, and we know that the reciprocal reference
frame deals with such normals to planes.
In a Cartesian reference frame, the reciprocal basis vectors are identical to the

direct basis vectorsei = e∗
i (this follows from equation (1.21) and from the fact that

the direct metric tensor is the identity matrix), and the unit cell volume is equal to
1, so the expression for the cross product reduces to the familiar expression:

p × q = (p2q3− p3q2)e1+ (p3q1− p1q3)e2+ (p1q2− p2q1)e3.

We introduce a new symbol, thenormalized permutation symbol ei jk . This symbol
is defined as follows:

ei jk =



+1 even permutations of 123,
−1 odd permutations of 123,
0 all other cases.

1

23

1

23

even odd

Theevenpermutationsof the indicesi jk are123,231,and312; theoddpermutations
are 321, 213, and 132. For all other combinations, the permutation symbol vanishes.
The sketch on the right shows an easy way to remember the combinations. We can
now rewrite equation (1.25) as

p × q = 
ei jk pi qja∗
k. (1.26)
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Note that this is equivalent to the more conventional determinantal notation for the
cross product:

p × q = 


∣∣∣∣∣∣
a∗
1 a∗

2 a∗
3

p1 p2 p3
q1 q2 q3

∣∣∣∣∣∣

=

∣∣∣∣∣∣
e1 e2 e3
p1 p2 p3
q1 q2 q3

∣∣∣∣∣∣ Cartesian

.

Using equation (1.21), we also find

p × q = 
ei jk pi qj g
∗
kmam. (1.27)

The general definition of the cross product can be used in a variety of situations. A
few examples are as follows.

(i) We can rewrite the definition of the reciprocal basis vectors (1.10) as a single equation,
using the permutation symbol:

a∗
i = 1

2

ei jk
(
a j × ak

)
, (1.28)

where a summation overj andk is implied. From this relation, we can also derive
equation(1.21).

(ii) The volume
 of the unit cell is given by the mixed product of the three basis vectors:†

a1 · (a2 × a3) = 
a1 · [ei jka2,ia3, j g
∗
kmam

]
,

= 
ei jk δ2i δ3 j g
∗
kma1 · am,

= 
e23kg∗
kmgm1,

= 
e231g
∗
1mgm1,

= 
δ11,

= 
.

Example 1.10Determine the cross product of the vectors[110] and [111] in the
tetragonal lattice of Example 1.1 on page 6.

Answer:From the general expression for the cross product we find

t[110]× t[111] = 
ei jk t[110],i t[111], ja∗
k,

= 1

4

[
(1× 1− 0× 1)a∗

1 + (0× 1− 1× 1)a∗
2 + (1× 1− 1× 1)a∗

3

]
,

= 1

4

(
a∗
1 − a∗

2

)
.

Using the solution for Example 1.9 on page 18, this is also equal toa1− a2 or the
direction vector[11̄0].

† ai, j is the j th component of the basis vectorai , expressed in the direct reference frameai .


