Contents

Preface xi
Acknowledgements xiii

Chapter 1 Introduction 1
1.1 Cyclostratigraphic data 1
1.2 Past studies of cyclic sediments 3
1.3 Time-series analysis – an introduction 6
1.4 Chapter overview 20

Chapter 2 Constructing time series in cyclostratigraphy 21
2.1 Introduction 21
2.2 Categories of cyclostratigraphic time series 22
2.2.1 Continuous-signal records 23
2.2.2 Discrete-signal records 26
2.2.2a Periodic discrete-signal records 27
2.2.2b Quasi-periodic discrete-signal records 27
2.2.2c Aperiodic discrete-signal records 27
2.3 Requirements for the generation of stratigraphic time series 28
2.3.1 Condition 1 – Consistent environmental conditions 28
2.3.2 Condition 2 – Unambiguous variable 28
2.3.3 Condition 3 – Thickness–time relationship 29
2.3.3a Continuous-signal records 29
2.3.3b Discrete-signal records 31
viii Contents

2.4 Sampling 32
2.4.1 Sample intervals and power spectra 33
2.4.2 Sample intervals and aliasing 34
2.4.3 Missing values and irregular sample intervals 39
2.5 Chapter overview 41

Chapter 3 Spectral estimation 43
3.1 Introduction 43
3.2 Processing of time series prior to spectral analysis 44
3.2.1 Mean subtraction 44
3.2.2 Ergodicity, stationarity and detrending 44
3.2.3 Outlier removal and the unit impulse 48
3.2.4 Pre-whitening 49
3.2.5 Other data transformations 52
3.3 Spectral estimation – preliminary considerations 55
3.3.1 Classes of spectra and noise models 55
3.3.2 Spectral resolution and bandwidth 58
3.3.3 Data tapering, spectral side-lobes and bias 61
3.3.4 Comparing spectra and normalization 63
3.4 Spectral estimation – methods 64
3.4.1 The Fourier transform and the periodogram 64
3.4.2 The direct method 69
3.4.3 The multi-taper method 70
3.4.4 The Blackman–Tukey method 75
3.4.5 The maximum entropy method 77
3.4.6 The Walsh method 79
3.5 The statistical significance of spectral peaks 81
3.6 Chapter overview 90

Chapter 4 Additional methods of time-series analysis 91
4.1 Introduction 91
4.2 Evolutionary spectra 91
4.3 Filtering 95
4.4 Complex demodulation 101
4.5 Cross-spectral analysis 103
4.5.1 Coherency spectra 103
4.5.2 Phase spectra 107
4.6 Wavelet analysis 112
4.7 Phase portraits and chaos 115
4.8 Singular spectrum analysis 123
4.9 Chapter overview 127

Chapter 5 Practical considerations 129
5.1 Introduction 129
5.2 Cyclostratigraphic signal distortions related to accumulation rate 130
 5.2.1 Trends in accumulation rate 130
 5.2.2 Random changes in accumulation rate 133
 5.2.3 Abrupt or step changes in accumulation rate 135
 5.2.4 Signal-driven accumulation rates, harmonics and combination tones 135
5.3 Cyclostratigraphic signal distortions related to other processes 142
 5.3.1 Rectification 142
 5.3.2 Bioturbation 144
 5.3.3 Undetected hiatuses 145
5.4 Practical time-series analysis 149
 5.4.1 How long should a time series be? 149
 5.4.2 Interpreting spectral peaks 155
5.5 Chapter overview 159

Chapter 6 Environmental cycles recorded stratigraphically 161
6.1 Introduction 161
6.2 The climatic spectrum 162
6.3 Tidal cycles 170
 6.3.1 Tidal cycles and orbital dynamics 170
 6.3.2 Stratigraphic records of tidal cycles 178
 6.3.3 Records of tidal cycles and the Earth’s orbital parameters 180
6.4 Annual cycles 181
6.5 The El Niño/Southern Oscillation 184
 6.5.1 The El Niño/Southern Oscillation system 184
 6.5.2 Stratigraphic records of ENSO variability 186
6.6 The North Atlantic Oscillation 187
6.7 Solar activity cycles 190
 6.7.1 Sunspot cycles and solar physics 190
 6.7.2 Stratigraphic records of solar cycles 194
6.8 Millennial-scale cycles and Heinrich events 195
6.8.1 Latest Pleistocene Heinrich events and millennial-scale climatic cycles in the North Atlantic 195
6.8.2 Climatic mechanisms involved in North Atlantic millennial-scale cycles and Heinrich events 197
6.8.3 Evidence for millennial-scale cycles outside the North Atlantic region 198
6.8.4 Earlier records and the origin of millennial-scale cycles 199
6.9 Milankovitch cycles 200
6.9.1 The nature and climatic expression of the orbital cycles 200
6.9.1a Precession 204
6.9.1b Eccentricity 205
6.9.1c Obliquity 206
6.9.2 Earth’s orbital history 206
6.9.3 Orbital tuning 207
6.9.3a Tuning of Pliocene–Recent cyclostratigraphic records 207
6.9.3b Tuning of older cyclostratigraphic records 209
6.9.4 Stratigraphic records of Milankovitch cycles 212
6.9.4a Results from stratigraphic studies 212
6.9.4b The 100-ka cycles in the late Pleistocene 214
6.10 Chapter overview 216

Appendix – published algorithms for time-series analysis 217
References 221
Index 252