

```
acid phosphatase, in Erwinia chrysanthemi, 36-7
                                                       avirulence mutants, 237-44
actinomycetes, 28-9
aerial environment, 77-84
                                                       bacteria-plant associations
aerosol dispersal of bacteria, 77-9
                                                         epiphytic associations, 79-86
agglutination of bacteria
                                                         general aspects, 1
   by plant cell wall components, 140 I
                                                         hypersensitive reaction, 138-42, 163-4
  in serology, 65
                                                       bacterial antagonist, see biological control
Agrobacterium radiobacter
                                                       bacterial antigens, 63
  bacteriocin production, 263-4
                                                       bacterial attachment
   role in biological control, 290-2
                                                         during the hypersensitive reaction, 163-4
Agrobacterium rhizogenes, Ri plasmid, 257 8
                                                         role of fimbriae, 26
Agrobacterium tumefaciens
                                                       bacterial classification and nomenclature, 42-9
  biological control, 290-2
                                                       bacterial competition
  crown gall disease, 10, 183-5
                                                         general aspects, 108
  gene induction, 248, 259-63
                                                         on phylloplane, 97
  IAA genes, 245, 261-3
                                                         in rhizosphere, 87-8
  motility and chemotaxis, 25, 112 13
                                                       bacterial entry into plant tissue, 114-20
  PHB inclusions, 45
                                                       bacterial flagella
  pigment, 58
                                                         general aspects, 23-5
  rhizosphere colonisation, 85, 112 13
                                                         taxonomic significance, 44-5
  serology, 63
                                                         see also motility
  Ti plasmid, 258 63
                                                       bacterial gene
  vascular migration, 123
                                                         evolutionary conservation, 247-8
agrocin-84, 290-1, 263-4
                                                         identification and investigation, 212-22
agropine, 186
                                                         library, 215-20
amino-terminal recognition of secretory proteins,
                                                         mapping, 222
       36 - 7
                                                         regulation of expression, 248, 261-2
antibiotics
                                                         translation product, 222
  bacterial resistance, 264-6, 277
                                                      bacterial genes, encoding
  biological control of disease, 283-7
                                                         antibiotic resistance, 264-5
  chemical control of disease, 276
                                                         avirulence, 223-9
  genetic control of resistance, 264 6
                                                         bacteriocin production, 263
antibodies to plant pathogenic bacteria, 62 6, 142
                                                         bioluminescence, 266
autoradiography, 33, 164-5
                                                         cellulases, 239-41
                                                         chemotaxis control proteins, 25
  genetic determination, 244 6, 259-63
                                                         disease virulence, 233-48
  synthesis, 206-8
                                                         extracellular polysaccharides, 243 4
auxotrophs, analysis of virulence, 233-5
                                                         hypersensitivity and pathogenicity, 229-33
avenulamin, 146
                                                        ice nucleation, 91, 249-50
avirulence genes
                                                        pectolytic enzymes, 238-9
  cloning, 225-6
                                                         plant hormones, 244-7
  gene-for-gene hypothesis, 223-4
                                                         proteases, 241 3
  gene products, 226-9
                                                        protein secretion, 35, 37
```


siderophore metabolism, 250-2	black rot of crucifers, see Xanthomonas campestri
toxins, 236–8	pv. campestris
tumour induction, 257–63	blackleg of potato, see Erwinia carotovora,
bacterial leaf blight of rice, see Xanthomonas	Erwinia chrysanthemi
campestris pv. oryzae	breeding for resistance, 305–8
bacterial membrane	
fatty acids, 70–1	capillary assay, of chemotaxis, 109-10
ice nucleation complexes, 91	capsule, 22-3
lipids, 21	carboxyl terminal recognition of secretory
pigments, 58–9	proteins, 35
proteins, 21	carboxylic acid bacterial toxins, 197
siderophore uptake, 95, 251	carotinoid pigment, bacterial, 58, 60
see also recognition, surface receptors	cations
bacterial migration during infection, 109-14	determination by X-ray microanalysis, 31–2
bacterial pigments in taxonomy, 58-61	inhibitors and cofactors of pectolytic enzymes,
bacterial plant pathogen	198–9
comparison to fungal pathogens, 4 6	leakage during the compatible reaction, 154,
criteria as disease agent, 6–7	157-8
fine structure, 13–40	leakage during the hypersensitive reaction,
bacterial populations	154 -7
on aerial plant surfaces, 79–84	siderophore uptake of ferric ions, 93–7
in planta, after inoculation, 128 30	synthesis and activation of bacterial toxins,
bacterial races, 48-9	195 6
bacterial species, 43	cell surface membranes, protein partitioning, 35-7
bacterial structure	cell surface complex, 18-27
capsule, 22 3	cellulase enzymes
cell surface complex, 18	disease virulence factors, 202
changes during infection, 163	secretion in Erwinia chrysanthemi, 203
mesosomes, 18	certification
nucleoid, 15-16	of disease-free plants, 310
peripheral ribosomal area, 17-18	of disease-free seed, 51, 310–12
periplasmic space, 21-2	chemical analysis of bacterial cells, 30–3
R-bodies, 18	chemical control of disease, 273-8
bacterial taxonomy, 41–76	chemotaxis
bacterial virulence and disease, 172-211	during Agrobacterium tumefaciens infection,
bactericides, 273 6	262
bacteriocin	general aspects, 24–5
diversity, 287-8	measurement, 109-10
experimental uses, 288-9	in rhizosphere, 85
genetic determination, 263 4	role in plant infection, 111-14
mode of action, 288	classification and nomenclature of bacteria, 42-9
production in environment, 289	Clavibater michiganensis subsp. sepedonicum
role in biological control, 287–92	control in potato, 312
bacteriophage	ELISA detection, 65
bacterial receptor sites, 27	colonisation of rhizosphere, 85
biological control agent, 299-300	compartmentation of cell activities, 33-7
DNA vector, 217–20	compatibility
lysotype, 61 2	evolution, 3-4
Bdellovibrio, use as biological control agent,	see also disease
300 -2	compatible reaction
bean, race/cultivar differentiation, 48	changes in plant cell plasmalemma, 154, 157–8
beta-galactosidase, in Erwinia chrysanthemi, 36-7	general aspects, 126–71
biological control	computer identification, 71–2
antagonist mode of action, 283-302	conjugation, DNA uptake by, 219–20
antagonist selection, 279-80	coronatine, 191-2
general aspects, 278-302	corky root disease of lettuce, 7-8, 304
in rhizosphere, 87	cosmid vector, 217–20
bioluminescence, use in bacterial monitoring,	cotton, resistance to Xanthomonas campestris pv.
266	malvacearum, 306
biotypes, 49	crop monoculture, 273
biovars, 49, 57, 184	crown gall disease, see Agrobacterium tumefaciens

cultivar resistance, screening and evaluation,	Erwinia carotovora
308–9	bacteriocin production, 290
cultural practices	biological control by predation, 302
aerosol dispersal of bacteria, 79	DNA probe, 68
disease control, 312–13	economic importance, 10–11
cytokinin synthesis	in irrigation water, 87
genetic control, 245–7	lenticel entry into potato, 118
virulence factor, 206–8	soft rot disease, 181–2
	suppression in rhizosphere, 295
differential growth media, 53	Erwinia chrysanthemi
disease	cellulase production, 203
bacterial pathogenicity factors, 173	pectate lyase genes, 239
bacterial virulence factors, 173	pectolytic enzyme production, 200-1
biological control, 278–302	protease production, 203
causal agents, 4-7	protease genes, 241–2
chemical control, 273 8	protein secretion, 35-7
diagnosis, 50–1	siderophore production, 252–2
environmental effects, 172	soft rot disease, 180–2
genetical control, 303–9	Erwinia herbicola
induction, 172–4	antibiotic production, 285–7
insect transmission, 97-103	auxin synthesis, 246
major types, 174–86	biocontrol agent, 280-3, 297-8
sanitary control, 309-13	chemotaxis, 114
specificity of induction by toxins, 189 90	ice-nucleation activity, 89-90, 97
disease-specific genes, see virulence genes	ice-nucleation genes, 250
DNA	Erwinia stewartii
preparation of fraction, 214 16	extracellular polysaccharide genes, 243-4
probe, 67-9	extracellular polysaccharide production, 23,
restriction fragment profile analysis, 66-7	205–6
sequence analysis, 222	insect transmission, 101
vector molecules, 215-18	Escherichia coli, siderophore production, 94-5
· · · · · · · · · · · · · · · · · · ·	evolution
electron probe X-ray microanalysis, 31 2	bacterial pathogenicity, 2-3
electrolyte leakage from plant cell, 155 6	conservation of <i>hrp</i> genes, 231–2
elicitors	conservation of pathogenicity and virulence
avirulence gene products, 227-9	genes, 247
induction of the hypersensitive reaction, 144–5	plant resistance, 3-4
enzyme-linked immunosorbent assay (ELISA), 63,	extracellular enzymes
65	genetical determination, 238-43
epiphytic bacteria	production by bacteria, 197-204
bacteria-plant associations, 1, 80–1	extracellular polysaccharide
induction of frost damage, 92 3	bacterial capsule, 22–3
plant infection, 107–14	genetic determination, 243–4
populations, 79–80, 93	toxins. 197
seasonal variation, 81–4	virulence factors, 202–6
siderophore production, 96–7	virulence factors, 202 o
sites of multiplication, 81 4	fastidious prokaryotes
Erwinia amylovora	insect transmission, 102–3
annual growth cycle, 81 2	selective media, 56
biological control, 280 3, 297–8	vascular migration, 123
chemotaxis, 114	vascular transport, 122–3
economic importance, 10 11	vascular wilt disease, 178–80
extracellular polysaccharide production, 204 5	fatty acid composition, 70–1
floral colonisation, 80, 82-3	fimbriae, 25-7
floral infection, 118 20	
	fireblight disease
growth media, 53–4	annual cycle, 82
host resistance, 304	biological control, 280–3
immunogold labelling, 34 nomenclature, 42	economic importance, 11
	genetical resistance, 304
streptomycin resistance, 264	see also Erwinia amylovora
vector transmission, 98–100	flagella, 23 5

floral infection, 118–20	phenotypic aspects, 88–93
fluorescent pseudomonads	identification of bacteria
LOPAT classification, 56	epiphytes, 51
PHB inclusions, 45	from infected tissue, 50
pigments, 58–9	in physical environment, 52
rhizosphere colonisation, 85–6	immobilisation of bacteria, during the HR, 162–4
specific growth media, 53–4	immunocytochemistry, 33–4, 65–6
suppression of soil pathogens, 292–5	incompatibility
see also ice nucleation, siderophore production,	bacteria-plant interaction, 126–71
Pseudomonas syringae, Pseudomonas	evolution, 3–4
fluorescens	indoleacetic acid, see auxin
freezing spectra of plant pathogenic bacteria, 89	infection of plant tissue, 107–25 insect vectors, 97–103
frost damage by bacteria	
general aspects, 92–3 leading to bacterial infection, 115–17	isoflavonoid phytoalexins, 149–50
use in competition assessment, 97	invertebrate transmission of disease, 97–103 in vitro systems, experimental uses, 132–3
see also ice nucleation	in vitro systems, experimental uses, 132–3
see also lee flucteation	Koch's postulates, 6-8
gel electrophoresis, 69-70	Tree permitted
gel immunodiffusion, 64-5	lectin agglutination of bacteria, 140-1
gene-for-gene hypothesis, 223–4	lenticel entry of bacteria, 115–18
genes, see bacterial genes, plant genes	light, effects on phytoalexin production, 150-1,
genetic analysis of plant pathogenic bacteria,	166
212–72	lipids
genetic control of plant disease, 303–9	bacterial membrane, 21
genomic fingerprinting, 67	fatty acid composition in bacteria, 70–1
Gram-negative bacteria	ice nucleation sites, 91
cell envelope, 19–22	peroxidation in plant cell plasmalemma, 153-5
general fine structure, 15	lipopolysaccharide
protein secretion, 35–7	insertion in outer membrane, 19–20
siderophore production, 94–5	surface vesicles, 27
taxonomy, 43–4	log-normal distribution of bacteria
Gram-positive bacteria	on phylloplane, 79
cell envelope, 19–20	in rhizosphere, 86
taxonomy, 43- 4	LOPAT grouping of fluorescent pseudomonads
growth media in diagnosis, 53-6	HR test, 131
hala blight disease 175 6 311	taxonomy, 56
halo blight disease, 175–6, 311 hawthorn, floral infection by <i>Erwinia amylovora</i> ,	lysotype, 49, 61–2
118–20	mesosomes, 18
histochemical stains, 33	membrane, see bacterial membrane, plant cell
host/pathogen specificity, 129, 174	plasmalemma
hydathode entry of bacteria, 115, 118	meristem culture of potato, 312
hypersensitive reaction	microelectrode measurement of membrane
activation of plant genes, 158–9	potential, 155, 157
bacteria-plant recognition, 139–42	micropropagated plants, 132–3
bacterial changes, 161-5	MLO, see mycoplamsa-like organisms
biochemical interactions, 142–52	mollicutes
general aspects, 126–71	taxonomic status, 91
genetic determination, 223-33	see also mycoplasma-like organisms,
hrp genes, 229-33	Spiroplasma
factors affecting induction and expression, 135-7	momilactone, 146
induction, 133–4	motility of plant pathogenic bacteria
plant cell changes, 138, 152-61, 166	during the hypersensitive reaction, 165
resistance mechanism, 165-6	flagellar activity, 24–5
test for pathogenicity, 131-2	measurement, 109-10
time course, 134–5	migration within plant tissue, 121-2
HR, see hypersensitive reaction	role in plant infection, 110-11
	role in root colonisation, 85
ice nucleation	monoclonal antibodies, 64
genes, 91, 249–50	multiple gene action, 307–9

1 01	
mycoplasma-like organisms	phytopathogen
fine structure, 29–31	definition, 4
insect transmission, 103	inoculation test, 126–7
motility and chemotaxis, 24-5	pigments
nutritional requirements, 46	in bacterial taxonomy, 58–61
taxonomy, 45-6, 68	siderophores, 93–7
see also mollicutes	pili, see fimbriae
see also momentes	*
magnetic diseases 174 90	plant cell death
necrotic diseases, 174–80	during disease, 128–31, 174–5
nopaline, 186, 259–63	in the hypersensitive reaction, 128–31, 138,
nucleoid, of bacterial cell, 15-17	152-3, 160-1, 166
numerical taxonomy, 71–2	plant cell fine structure
	mesophyll cell changes during halo blight
octopine, 186, 259–63	disease, 176–7
oncogenic bacteria, 174-5, 183-6	pathological changes during the hypersensitive
opines	reaction, 160-1
genetic determination, 257–63	potato tuber cell changes during soft rot
synthesis by transformed plant cells, 185	disease, 181–3
opportunistic pathogens	plant cell plasmalemma
HR test for pathogenicity, 131	effect of bacterial toxins, 194
soft-rot disease, 181, 183	effect of plant pathogenic bacteria, 153–8
oxygen	electrolyte leakage, 155–6
effect on phytoalexin production, 151–2	lipid peroxidation, 153–5
induction of plant cell damage, 153, 159	membrane potential, 155
	water efflux and plasmolysis, 156
PAGE, see polyacrylamide gel electrophoresis	plant cell wall components
parasitic bacteria, 1, 3	elicitors, 144–5, 149
pathogenicity	recognition factors, 140-1
criteria, 6–7	plant disease, see disease
definition, 173	plant genes, encoding
evolution, 2	
	bacterial attachment sites, 262–3
inoculation responses, 126–8, 131–2	resistance response, 158–9
testing, 52, 80, 127	plant growth-promoting rhizobacteria
pathovars, 46–8	role in biological control, 294–5
pectate lyase	soil competition, 87–8
secretion in Erwinia chrysanthemi, 35–7	plant hormones
see also pectolytic enzymes	role in tumour diseases, 206–8
pectolytic enzymes	bacterial genes, 244-7, 259
genetic determination, 238-9	see also auxin, cytokinin
virulence factors, 198–201	plant pathogenic bacteria
PEL, see pectate lyase	economically important species, 9–10
pepper, race/cultivar differentiation, 48, 306–7	relation to crop monoculture, 7–8, 273
peripheral ribosomal area of bacterial cell, 17–18	see also parasitic bacteria, phytopathogen
phage, see bacteriophage	plant resistance
PHB, see polyhydroxybutyrate	evolution, 3
phaseollin, 146	response to bacteria, 126–71
phaseolotoxin, 192–3	see also resistance response genes, resistance
phloem-limited bacteria	genes
insect transmission, 100, 103	plant signal molecules, 248
vascular disease, 179	plasmid
phylloplane	electron microscope observation, 254–5
epiphytic bacteria, 79–81	isolation and characterisation, 252–4
siderophore production, 96–7	in plant pathogenic bacteria, 252-66
phyllosphere, 79	vector molecules, 215–18
phytoalexins	see also cosmid, plasmid genes, Ri plasmid, Ti
detection and quantitation, 147	plasmid
diversity, 145	
	plasmid genes, encoding
elicitor monitoring, 144–5	antibiotic resistance, 264–6
environmental effects, 150–2	bacteriocin production, 263
in plant resistance, 165–6	pathogenicity and virulence factors, 255-63
synthesis, 149–50	polyacrylamide gel electrophoresis, 69–70

polyclonal antibodies, 63-7	races, 49
polygalacturonase,	surface membrane proteins, 69
mode of action, 198–201	virulence mutants, 235
secretion of Erwinia chrysanthemi, 35-7	Pseudomonas syringae
polygenes, in disease resistance, 307–9	electron microscopy, 16
polyhydroxybutyrate inclusions, 17–18, 45	epiphytic populations, 67, 81
polypeptide analysis, 69–70	ice nucleation activity, 90–3, 97
polysaccharide, see extracellular polysaccharide	ice nucleation genes, 249–50
potato	site competition between strains, 298
biological control of Erwinia carotovora, 295,	toxin production, 191–6
302	use as biological control agent, 280-3
lenticel entry of bacteria, 118	see also fluorescent pseudomonads
meristem culture, 312	Pseudomonas syringae pv. glycinea
phytoalexins, 146, 151–2	cloning and analysis of avrA gene, 225–8
resistance to soft rot, 304, 307–8	motility and plant infection, 110-12, 121-2
soft rot diseases, 11, 180–2	race-cultivar interactions, 223–4
predatory antagonists, 87–8, 299–302	Pseudomonas syringae pv. mors-prunorum,
protease	epiphyte, 107
genes, 241–3	numerical taxonomy, 72
secretion in Erwinia chrysanthemi, 35-7, 203	pathovar status, 47
virulence factor, 202	Pseudomonas syringae pv. papulans, antibiotic
protein partitioning by bacterial surface	resistance, 264
membranes, 35–7	Pseudomonas syringae pv. phaseolicola
proton influx during the hypersensitive reaction,	attachment to surfaces, 26
155–7	bacteriophage receptor sites, 27
proton pump, bacterial effect on, 154-5, 158	biochemical differentiation, 57
prototroph, analysis of virulence, 233–5	certification of bean seed, 311
Pseudomonas andropogonis, toxin production,	DNA probe, 68–9
196–7	halo blight disease, 175–6
Pseudomonas fluorescens	hrp genes, 231
colonisation of rhizosphere, 85	phylloplane population, 82–4
ice nucleation activity, 90-1	phytoalexin induction, 149
ice nucleation genes, 249–50	race-cultivar interactions, 48
non-pathogenic response after leaf infiltration,	surface vesicles, 27
126–7	toxin production, 190–3
siderophore production, 96	Pseudomonas syringae pv. syringae
use as biological control agent in rhizosphere,	biochemical differentiation, 57
294–5	certification of seed, 311
see also fluorescent pseudomonads	certification of tomato transplants, 310
Pseudomonas melophthora, insect transmission,	induction of frost damage, 92-3
101–2	minimum threshold level, 108
Pseudomonas putida	numerical taxonomy, 72
colonisation of rhizosphere, 85	pathovar status, 47
use as biological control agent in rhizosphere,	phylloplane populations, 82-4
294–5	siderophore production on phylloplane, 96-7
see also fluorescent pseudomonads	surface pathogenicity factor, 141-2
Pseudomonas savastanoi subsp. savastanoi	toxin production, 193–5
cytokinin genes, 245, 247	see also fluorescent pseudomonads
indoleacetic acid genes, 244-6	Pseudomonas syringae pv. tabaci
insect transmission, 102	elemental composition, 31–2
secretion of plant hormones, 207-8	host resistance, 305-6
tumour disease, 185–6	mutagenesis of toxin genes, 237-8
Pseudomonas solanacearum	occurrence of flagella during disease
attachment and incompatibility, 138-9	development, 121–2
avirulent mutants in biological control, 298-300	toxin production, 191, 195–6
biovars, 57	uptake of Ni ⁶³ , 34
cellulase genes, 241	Pseudomonas syringae pv. tomato
cellulase secretion, 202	aerosol/rain dispersal, 78
extracellular polysaccharide, 205	certification of tomato transplants, 310
fimbriae, 25	DNA probe, 68
major plant pathogen, 10	epiphytic survival, 80

pyoverdines bacterial pigments, 58–9	somatic hybridisation, in genetical control of disease, 307–8
genetic determinat, 251	soybean, race/cultivar differentiation, 48, 223-4
pyridine-derivatives, bacterial pigments, 58	spheroplast formation, 30 Spiroplasma
races, of plant pathogenic bacteria, 48-9	fine structure, 29
race-specific resistance, 128	insect transmission, 103
R-bodies, 18	selective growth medium, 55–6
rain dispersal of bacteria, 77–9	taxonomy, 45–6
receptors, see surface receptors	see also mollicutes
recognition	sterilisation of equipment, 313
activation of the hypersensitive reaction, 139–42	stomatal entry of bacteria, 115, 117–18 Streptomyces, 28–9
of amino and carboxyl terminals during protein secretion, 35-6	surface receptors chemotaxis, 24, 261–2
of avirulence gene products, 226-7	membrane proteins, 21
prevention by extracellular polysaccharide, 203 resistance genes	recognition during the hypersensitive reaction 140-2
determining incompatibility, 223-4	siderophore uptake, 95
in biological control, 303–9	sites for attachment to plant surfaces, 26
see also cultivar resistance	sites for viral attachment, 27, 251
resistance response genes, 158-9	see also bacterial membrane, recognition
rhizobitoxine, 196–7	syringomycin/syringotoxin, 193-5
rhizosphere	
bacterial competition and predation, 87–8	tabtoxin, 195–6, 237-8
colonisation, 84–5	tagetitoxin, 192
pathogen populations and disease, 86	Ti plasmid, 185, 245, 257–63
siderophore production, 96, 294–5	tobacco
specificity of bacteria-plant associations, 85–6	leaf inoculation, 126–8
Ri plasmid, 258	pathogen races, 48
rice	resistance to wildfire disease, 305–6
assessment of cultivar resistance, 309	tolaasin, 195
bacterial leaf blight, 9, 10	tolaasin, 195
bacterial entry via hydathodes, 118	toxins, produced by plant pathogenic bacteria bacterial resistance to toxins, 190–1
see also Xanthomonas campestris pv. oryzae rishitin, 146, 151–2	characterisation of individual toxins,
RNA-DNA probe, 69	191–7
root, see rhizosphere	criteria as virulence factors, 187
root, see rinzospiiere	genetic determination, 236–8
sanitary procedures for disease control, 309-13	specificity and function, 189–90
saprophyte	structure and biosynthesis, 188-9
chemotactic response, 114	transduction, 218–20
leaf inoculation response, 126–8	transduction in bacteria, 219
seasonal variation in epiphytic populations, 81–4	transfection of bacterial cells, 218–19
seedborne pathogens	transformation of bacterial cells, 218-19
certification of seed, 310–12	transformation of plant cells by Agrobacterium
detection and identification, 51-2	tumefaciens, 184–5, 257–63
selective growth media, 53-6	transposon mutagenesis, 37, 221
serotype, 49, 626	triparental mating, 220, 228
siderophore	tumour diseases
general features, 93–6	general characteristics, 183-6
genetic control, 250-2	genetic determination of pathogenicity, 244-7
in vitro production, 293–4	25763
phylloplane production, 96–7	
rhizosphere production, 96, 294	vascular migration of bacteria, 122–3
role in biological control, 292–5	vascular wilt and yellows diseases, 178-80
signal peptide sequences, 36	vector molecules, 215–20
site competition, in biological control, 296–9	virulence
soft rot diseases, 180–3	definition, 173
soil/water environment, 84–8	factors causing disease symptoms, 173–208
somaclonal variation, 305	virulence genes, 229, 233–48

Index 325

wild fire disease, *see Pseudomonas syringae* pv. *tabaci* wilt disease, 178-9 wound entry of bacteria, 115-16

Xanthomonas campestris
epiphytic survival, 81
ice nucleation activity, 92-3
plasmid DNA restriction fragments, 67
polypeptide analysis, 69
seed contamination, 312
Xanthomonas campestris pv. campestris
black rot of crucifers, 180-1
seed transmission, 311-12
Xanthomonas campestris pv. citri
biotypes, 49, 67
DNA restriction fragment profile analysis, 67
isozymes, 70
major pathogen, 10
rain dispersal, 77-8

Xanthomonas campestris pv. malvacearum elicitation of phytoalexin production, 147-8 induction of the hypersensitive reaction, 150-1 Xanthomonas campestris pv. oryzae assessment of rice cultivar resistance, 309 geographic spread, 9 lysotypes, 61-2 major pathogen, 10 Xanthomonas campestris pv. vesicatoria entry via stomata, 117-18 rain dispersal, 78 resistance in pepper, 306-7 xanthomonadin pigment, 58 xylem-limited bacteria insect transmission, 100, 102 selective medium, 55-6 vascular wilt disease, 178-9 Xylella fastidiosa, see xylem-limited bacteria

yellows disease, 179-80