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Drilling short geodesics in hyperbolic 3-manifolds
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Abstract

We give an expository account of the deformation theory of geometrically

finite, 3-dimensional hyperbolic cone-manifolds and its application to three clas-

sical conjectures about Kleinian groups.

1. Introduction

In a series of papers ([HK98, HK02, HK]), Hodgson and Kerckhoff developed a defor-

mation theory for 3-dimensional hyperbolic cone-manifolds which they used to prove

various important results about closed and finite volume hyperbolic 3-manifolds. This

deformation theory was extended to infinite volume, geometrically finite hyperbolic

cone-manifolds in [Bro04b, Bro04a]. In this setting the deformation theory has had a

number of applications to classical conjectures about Kleinian groups.

Here is an example of a basic problem that can be addressed via the deformation

theory. Let (M,g) be a geometrically finite hyperbolic 3-manifold that contains a

simple closed geodesic γ. Let M̂ = M\γ be the complement of γ. There will be then

be a unique, geometrically finite, complete hyperbolic metric ĝ on M̂ such that the

conformal boundaries of (M,g) and (M̂, ĝ) agree. We have the following theorem

Theorem 1.1 ([BB04]). For each K > 1 there exists an � > 0 such that if the length

of γ in (M,g) is less then � then there exists a K-bi-Lipschitz map

φ : (M\T,g) 2³ (M̂\T̂, ĝ)

where T and T̂ are Margulis tubes about γ and the rank two cusp, respectively.

We call such a theorem a “drilling theorem” for we have drilled the geodesic γ out

of the hyperbolic manifold (M,g).

The way we obtain geometric control of the metric ĝ is to interpolate between

g and ĝ using hyperbolic cone-metrics. The Hodgson-Kerckhoff deformation theory

gives means to bound the change in geometry as this one-parameter family of metrics
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varies. The first part of this paper will be an exposition of this deformation theory

emphasizing the most geometric parts. For an expository account of Hodgson and

Kerckhoff’s work see [HK03]. To keep this paper somewhat self-contained there is

some necessary overlap between the two papers.

In the second part of the paper we will apply the deformation theory to a collection

of classical conjectures in Kleinian groups: the density conjecture, density of cusps

on the boundary of quasiconformal deformation spaces and the ending lamination

conjecture. Rather than discussing these conjectures in their full generality we will

restrict to the special case of a Bers’ slice. This will allow us to demonstrate how the

deformation theory plays a role in approaching the conjectures in a simpler setting.

Acknowledgments. This paper is an expanded version of a talk given at the work-

shop on Spaces of Kleinian Groups and Hyperbolic 3-Manifolds held at the Newton

Institute in August 2003. The author would like to thank Caroline Series, Yair Minsky

and Makoto Sakuma for organizing the workshop and their solicitation of this article.

The author would also like to thank his collaborator, Jeff Brock, with whom he did

much of the work described in this paper.

2. Deformations of hyperbolic metrics

We will begin by examing the various different ways one can study a family of hy-

perbolic metrics: as Riemannian metrics, as (G,X)-structures and as representations

of the fundamental group in the space of hyperbolic isometries. We will see the ad-

vantages of each viewpoint and the connections between the different viewpoints. A

reference for this material is §1 and §2 of [HK98].

In the final subsection we will discuss complex projective structures on surfaces.

These arise naturally as the boundary of hyperbolic 3-manifolds and will play an im-

portant role in the extension of the Hodgson-Kerckhoff deformation theory to infinite

volume and geometrically finite hyperbolic cone-manifolds.

2.1. One-parameter families of metrics

We start with a family of metrics, gt : V ×V 2³ R, on a finite dimensional vector

space V . For each t there is a unique ηt * hom(V,V ) such that

dgt(v,w)

dt
= 2gt(v,ηt(w)). (2.1)

Since gt is symmetric, ηt is self-adjoint, i.e.

gt(ηt(v),w) = gt(v,ηt(w)).
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Drilling short geodesics 3

We measure the size of ηt using the metric gt . Let {e1, . . . ,en} be an orthonormal

basis for V in the gt metric. Then define the norm of ηt by the formula

�ηt�2 = ∑gt(ηt(ei),ηt(ei)). (2.2)

For any v *V we then have

gt(v,ηt(v)) f �ηt�gt(v,v).

By integrating (2.1) we see that if �ηt� f K for all t * [0,T ] then

e22KT g0(v,v) f gT (v,v) f e2KT g0(v,v).

In particular the identity map on V is a KT -bi-Lipschitz map from the g0-metric to

gT -metric.

The trace of ηt is the divergence and it is the derivative of the volume. The traceless

part of ηt is the strain and it measures the change in the conformal structure.

2.2. Metrics on a manifold

Now we apply the above work to a family of metrics, gt , on a differentiable manifold

M. In this setting ηt is a one-parameter family in hom(T M,T M). Let �ηt(p)� be

the pointwise norm of ηt . Let φt : (M,g0) 2³ (M,gt) be the identity map on M. If

�ηt(p)� f K for all p * M and all t * [0,T ] then φt is a KT -bi-Lipschitz diffeomor-

phism.

The identity map on M may not have the smallest bi-Lipschitz constant of all maps

from (M,g0) to (M,gt). In particular for an arbitrary family of metrics there is no rea-

son to hope that we can control the norm of ηt . The driving idea behind the Hodgson-

Kerckhoff deformation theory is to find one-parameter families of hyperbolic metrics

gt where the derivative ηt is a harmonic strain field. As we will see below, this extra

structure will allow us to control the norm of ηt .

2.3. Hyperbolic metrics on a manifold

Let H (M) be the space of all hyperbolic metrics on M. Two metrics g and h in H (M)

are equivalent if there is a diffeomorphism ψ : M 2³ M isotopic to the identity such

that h = ψ7g. Given two equivalence classes of metrics we want to find an efficient

path between them. That is we want to find a path gt that minimizes the derivative ηt .

The last statement can be interpreted in a number of ways. For example, we could try

to minimize the pointwise or L2-norm of ηt . However, if M is not compact then both of

these norms can and will be infinite. Our efficient paths will have two properties. First,
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they will be divergence free so that ηt is a strain field. Second they will be harmonic.

We will not formally define harmonic. Informally, one can think of a harmonic strain

field as locally minimizing the L2-norm (see Appendix B of [McM96]).

A harmonic strain field satisfies the following important equation:

Theorem 2.1. Let (M,g) be a compact hyperbolic manifold with boundary and let η

be a harmonic strain field. Then

M
�η�2 +�∇η�2 =

∂M
7∇η'η. (2.3)

This formula is very important because it allows us to compute the L2-norm of

a strain field by only knowing information on the boundary. We also note that η is

harmonic if it satisfies (2.3) for all compact submanifolds.

Another feature of harmonic strain fields is that they satisfy a mean value inequal-

ity:

Theorem 2.2. Let (M,g) be a hyperbolic manifold and η a harmonic strain field. If

B is a ball in M of radius R > π:
2

centered at p then

�η(p)� f 3
"

2(B)

4π f (R)

�

B
�η�2dV

where f (R) = cosh(R)sin(
:

2R)2
:

2sinh(R)cos(
:

2r).

Together, Theorems 2.1 and 2.2 will allow us to get pointwise bounds on the the

norm of η, at least for points in the thick part of (M,g).

2.4. Developing maps

Another way to think of a hyperbolic structure is as a (G,X)-structure, where X is

hyperbolic space and G the group of hyperbolic isometries. A (G,X) structure is an

atlas of charts to X with transition maps which are restrictions of elements of G. A

(G,X)-structure determines a developing map and a holonomy representation.

Here’s how it works for a hyperbolic 3-manifold: A developing map is a local

diffeomorphism,

D : M̃ 2³ H
3,

and the holonomy representation is a representation of the fundamental group,

ρ : π1(M) 2³ PSL2C = Isom+(H3).

� �

�
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Drilling short geodesics 5

The developing map commutes with the action of the fundamental group where the

fundamental groups acts on M̃ as deck transformations and on H
3 via the holonomy

representation. That is

D(γ(x)) = ρ(γ)D(x) (2.4)

for all γ * π1(M). Let g̃ be the pull back of the hyperbolic metric. Then (2.4) implies

that g̃ is equivariant and descends to a hyperbolic metric g on M.

Conversely, a hyperbolic manifold, (M,g), determines a developing map and holonomy

representation. The developing map is unique up to post-composition with hyperbolic

isometries. If we post-compose the developing with an isometry α * PSL2C then we

conjugate the holonomy by α.

Given a smooth family of hyperbolic metrics (M,gt), there is a smooth family of

developing maps Dt , and holonomy representations ρt . The derivative of the devel-

oping maps determines a family of vector fields vt on M̃ in the following way. For a

point x * M̃, Dt(x) is smooth path in H
3. Let vt(x) be the pull-back, via Dt , of the

tangent vector of this path at time t. These vector fields are not equivariant. However,

they do satisfy the following automorphic property. For all γ * π1(M) the difference,

γ7vt 2 vt , is an infinitesimal isometry in the g̃t -metric. That is, the flow of the vector

field γ7vt 2 vt is an isometry. This follows directly from differentiating (2.4).

The automorphic vector fields vt , lead to the connection between the developing

maps and the derivative, ηt , of the metrics gt . The covariant derivative, ∇tvt , is an ele-

ment of hom(T M̃,T M̃). Let sym∇tvt be its symmetric part. The covariant derivative

of an infinitesimal isometry is skew. Therefore, the automorphic property of vt implies

that sym∇tvt is equivariant and descends to an element of hom(T M,T M). By noting

that the derivative
dgt (v,w)

dt
is the Lie derivative Lvt gt(v,w) we see that sym∇tvt = ηt .

2.5. Holonomy representations

Let R (M) be the space of representations of π1(M) in PSL2C. We are only interested

in representations up to conjugacy so we would like to study the quotient of R (M)

under the action of PSL2C by conjugacy. Unfortunately, this quotient may not be a

nice object. For instance it may not even by Hausdorff. Instead one takes the Mum-

ford quotient of R (M) which we denote R(M). The Mumford quotient is an algebraic

variety and its Zariski tangent space at a representation ρ is the cohomology group

H1(π1(M);Adρ). It will turn out, that at all points were are interested in, R(M) is

simply the topological quotient of R (M) by conjugacy. Furthermore, at these points

R(M) will be a differentiable manifold and the the Zariski tangent space will be nat-

urally identified with the differentiable tangent space. For this reason we will ignore

the distinction between the Mumford quotient and the topological quotient.

By differentiating a smooth family of representations ρt we can see how the dif-
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ferentiable tangent space at each ρt is identified with H1(π1(M);Adρt). Let γ be an

element of π1(M). Then ρt(γ) is a smooth path in PSL2C. Each tangent space of

PSL2C is canonically identified with the Lie algebra sl2C. Therefore the derivative ρ̇t

can be thought of as a map

ρ̇t : π1(M) 2³ sl2C

for each t. This map satisfies the cocyle condition

ρ̇t(γβ) = ρ̇t(γ)+Adρt(γ)ρ̇t(β)

for all γ and β in π1(M) and therefore determines a cohomology class in H1(π1(M);Adρt).

We also remark that ρ̇t(γ) corresponds to the vector field γ7vt 2 vt . The latter

vector field is identified with an element of sl2C by pushing forward γ7vt 2 vt via Dt .

This push foward is an infinitesimal isometry on H
3 and the space of infinitesimal

isometries of H
3 is canonically identified with sl2C.

2.6. Complex projective structures

A complex projective structure on a surface S is an atlas of charts to the Riemann

sphere, �C, where the transition maps are restrictions of elements of PSL2C. A projec-

tive structure is another example of (G,X)-structure where G = PSL2C and X = �C.

Let P(S) be the space of projective structures on S. Since the action of PSL2C is con-

formal, a projective structure also determines a conformal structure on S so there is a

map

P(S) 2³ T (S)

where T (S) is the Teichmüller space of marked conformal structures on S. One is

often interested in the space of projective structures with a fixed conformal structure

X . We denote the space of such structures P(X).

Elements of PSL2C take round circles in �C to round circles. Therefore, there is

a well defined notion of a round circle on a projective structure. A conformal map

f between two projective structures Σ and Σ� will distort these round circles. The

Schwarzian derivative, S f , measures this distortion. We will not give an exact defini-

tion of S f although we will describe an infinitesimal version below. We will however

state the key properties of the Schwarzian derivative that we will use. First, S f is a

holomoprhic quadratic differential on X . The quotient of the absolute value of a holo-

morphic quadratic differential and a metric is a function. Using the unique hyperbolic

metric on X we can take the sup-norm of this function to a define the sup-norm, �S f�∞,

of the Schwarzian. This determines a metric on P(X) by setting d(Σ,Σ�) = �S f�∞.

Furthermore, given any holomorphic quadratic differential Φ on X there is a projec-

tive structure Σ� such that for the conformal map f : Σ2³ Σ�, S f = Φ. Therefore P(X)

www.cambridge.org/9780521617970
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is isomorphic to the vector space Q(X) of holomorphic quadratic differentials on X .

A projective structure is Fuchsian if it is the quotient of a round disk in �C. There is

a unique Fuchsian projective structure, ΣF , in each P(X). We will often be interested

in the distance between an arbitrary projective structure Σ * P(X) and this unique

Fuchsian projective structure. We therefore let �Σ�F = d(Σ,ΣF).

As with any (G,X)-structure, a projective structure Σ on S determines a developing

map

D : S̃ 2³ �C

and a holonomy representation

ρ : π1(S) 2³ PSL2C

satisfying (2.4). Now let Σt be a smooth path of projective structures in P(X). Then

there is a smooth path of developing maps Dt which determine vector fields vt on S̃.

The developing maps, Dt , can be chosen to be conformal maps from X̃ to �C which

will make the vectors fields vt conformal on X̃ .

Let v(z) be a conformal vector field on a domain in �C. Then v(z) = f (z) ∂
∂z

where

f is a holomorphic function. A conformal vector field is projective if its flow consists

of elements of PSL2C. The space of projective fields is the Lie algebra sl2C and v(z)

will be projective if and only if f (z) is a quadratic polynomial. At each point z in

the domain let s(z) be the unique projective vector field that best approximates v at

z. Note that s(z) is obtained by taking the first three terms of the Taylor series of f

at z. Differentiating s(z) we obtain an sl2C-valued 1-form which can be canonically

associated with a holomorphic quadratic differential. This quadratic differential is the

Schwarzian derivative, Sv, of the vector field v.

We now return to our path of projective structures Σt in P(X). The Schwarzian

derivative of the conformal vector fields vt will be equivariant and therefore Svt will

be a holomorphic quadratic differential on X . The norm �Svt�∞ is the infinitesimal

version of the metric on P(X) and if we can bound it for all t we bound the distance

between Σ0 and Σ1.

We need one final fact about projective structures. The holonomy representation

defines a map from P(S) to the space R(S) of representations of π1(S) in PSL2C mod-

ulo conjugacy. We the have the following theorem.

Theorem 2.3 ([Hej75, Ear81, Hub81]). The holonomy map

hol : P(S) 2³ R(S)

is a holomorphic, local homeomorphism.

www.cambridge.org/9780521617970
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3. Hyperbolic cone-manifolds

3.1. Geometrically finite hyperbolic cone-manifolds

Let N be a compact manifold with boundary, C a collection of simple closed curves

in the interior of N and M the interior of N\C . Let g be a complete metric on the

interior of N that is a smooth Riemannian metric on M. We say that g is a hyperbolic

cone-metric if the following holds: First g is a hyperbolic metric on M. Second, for

points on C the metric has the form

dr2 + sinh2 rdθ2 + cosh2 rdz2

where θ is measured modulo some cone-angle α. Note that the cone-angle must be

locally constant on C . Therefore there is a cone-angle associated to each component

of C .

Since the metric g is complete the boundary ∂N consists of tori and higher genus

surfaces. Let ∂0N denote the higher genus components of the boundary. To develop a

good deformation theory we need to assume that there metric g has certain asymptotic

behavior as we approach ∂0N. We say that a hyperbolic, cone-metric g is geometri-

cally finite if the hyperbolic structure extends to a projective structure on ∂0N. More

explicitly g is geometrically finite if for each p * ∂0N there exists an open neighbor-

hood of p in N and a map ψ : V 2³ H
3 * �C that is a homeomorphism onto its image

and is an isometry on V + intM. The restriction of ψ to V +∂0N will determine an atlas

of charts to �C. Since hyperbolic isometries of H
3 extend to projective transformations

of �C this atlas will determine a projective structure on ∂0N.

Let GF(N,C ) be equivalence classes of geometrically finite hyperbolic cone-manifolds

on the pair (N,C ). If g is a hyperbolic cone-metric on (N,C ) we refer to the induced

projective structure on ∂0N as the projective boundary. The projective structure in-

duces a conformal structure on ∂0N. This is the conformal boundary.

Note that the round circles in the projective boundary are the boundary at infinity

of hyperbolic planes in the hyperbolic manifold. As the 3-dimensional hyperbolic

metric deforms these planes will not stay totally geodesic. This will be detected by

the change in the projective boundary.

3.2. Deformations of hyperbolic cone-manifolds

A meridian for the pair (N,C ) is a simple closed curve γ ¢ intN that bounds a disk in

N which intersects C in a single point. Each component of C has a unique meridian up

to homotopy in M = intN\C . Furthermore if ρ is the holonomy of a cone-manifold

structure on (N,C ) then ρ(γ) will be elliptic (or the identity if the cone angle is a

www.cambridge.org/9780521617970
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multiple of 2π) for all meridians γ.

On the other hand there certainly will be representations where not all meridians

are elliptic. For this reason we let Re(M) be the subset of R(M) where the meridians

are elliptic or the identity. We then have the following theorem which is essentialy

due to Thurston ([Thu80]).

Theorem 3.1. The holonomy map

hol : GF(N,C ) 2³ Re(M)

is a local homeomorphism.

With this theorem our next goal is to give a local parameterization of R(M). To do

this we first need to define parameters. This local parameterization will be of a neigh-

borhood in R(M), not just a neighborhood in Re(M). These more general represen-

tations also have geometric signifigance. They correspond to Thurston’s generalized

Dehn surgery singularities. We will not explain the geometry of these singularities

here.

Let

LM : R(M) 2³ C
k

be the holomorphic map which assigns to each representation the k-tuple of complex

lengths of the k-meridians of (N,C ). This is our first set of parameters.

The second set of parameters comes from the conformal boundary. Given a com-

ponent S of ∂0N we can define a map from GF(N,C ) to the Teichmüller space T (S).

This map assigns to each geometrically finite cone-manifold the conformal boundary

structure on S. If ρ * R(M) is the holonomy of a cone-manifold in GF(N,C ) then by

pre-composing this map with hol21, we obtain a map ∂S from a neighborhood of ρ in

Re(M) to T (S). Here we choose the unique branch of hol21 that takes ρ to the given

geometrically finite cone-manifold. There is then a unique holomorphic extension of

∂S to a neighborhood of ρ in R(M).

Repeating the construction for each component of ∂0N and combining the maps

we have a single map

∂ : R(M) 2³ T (∂0N).

Strictly speaking ∂ is only defined for a neighborhood of ρ in R(M). We also note that

there are examples of distinct geometrically finite hyperbolic cone-manifolds with

the same holonomy representation. When this happens each manifold will define a

different boundary map ∂.
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10 Bromberg

Now we combine our two parameters. Define

Φ : R(M) 2³ C
k ×T (∂0N)

by Φ(ρ) = (LM (ρ),∂(ρ)).

Theorem 3.2 ([HK98, HK, Bro04b]). Let ρ be the holonomy of a geometrically finite

cone-manifold. If the cone-angle is f 2π or the tube radius of the singular locus is

g sinh21 1/
:

2 then the map Φ is a holomorphic local homeomorphism.

Sketch of proof of theorem 3.2. By a theorem of Thurston

dimC R(M) g k +dimC T (∂0N).

Since the map Φ is holomorphic if we can show that the derivative, Φ7, is injective at

ρ then Φ will be a local homeomorphism at ρ.

The first step in proving this injectivity is a Hodge theorem: Any tangent vector

of R(M) at ρ that is in the kernel of ∂7 is represented by a harmonic strain field η on

(M,gα). Note there are some subtle issues to proving this Hodge theorem since our

manifold is not compact and the metric is not complete. In particular, the harmonic

strain field η is only unique after making some choice of boundary conditions for the

solution.

Next we would like to calculate the L2-norm of η on M. Theorem 2.1 tells how to

calculate the L2-norm of a harmonic strain field on a compact manifold with bound-

ary. We can obtain a similar formula for harmonic strain fields on a geometrically

finite manifold if the strain field fixes the conformal boundary. Analytically this is

equivalent to ∂7η = 0 where ∂7 is the tangent map of the boundary map ∂ from R(M)

to T (∂0N). The pointwise norm of such conformal deformations will decay expo-

nentially and the boundary term in (2.3) will limit to zero for surfaces exiting the

geometrically finite end. This allows us to calculate the L2-norm of η even on the

non-compact geometrically finite ends. In particular, we have

M\U
�η�2 +�∇η�2 =

∂U
7∇η'η

where U is tubular neighborhood of the singular locus, even though M\U is not com-

pact. Note that in general the L2-norm will be infinite on all of M.

The final step is to calculate the boundary term. This is done in the following way.

In a tubular neighborhood of the singular locus we can decompose η as the sum of

two strain fields, η = η0 + ηc. The first term, η0, is an explicit model deformation

completely determined by the derivatives of the complex lengths of the components

� �
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