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Basics of cryptography

The Oxford English Dictionary gives the following definition of cryptography.
‘A secret manner of writing, either by arbitrary characters, by using letters

or characters in other than their ordinary sense, or by other methods intelligible
only to those possessing the key; also anything written in this way. Generally,
the art of writing or solving ciphers.’

Cryptography is an ancient art, and until relatively recently the above defi-
nition would have been quite adequate. However, in the last thirty years it has
expanded to encompass much more than secret messages or ciphers.

For example cryptographic protocols for securely proving your identity on-
line (perhaps to your bank’s website) or signing binding digital contracts are
now at least as important as ciphers.

As the scope of cryptography has broadened in recent years attempts have
been made to lay more rigorous mathematical foundations for the subject. While
cryptography has historically been seen as an art rather than a science this has
always really depended on which side of the ‘cryptographic fence’ you belong.
We distinguish between cryptographers, whose job it is to design cryptographic
systems, and cryptanalysts, whose job it is to try to break them. Cryptanalysts
have been using mathematics to break ciphers for more than a thousand years.
Indeed Mary Queen of Scots fell victim to a mathematical cryptanalyst using
statistical frequency analysis in 1586!

The development of computers from Babbage’s early designs for his
‘Difference Engines’ to Turing’s involvement in breaking the Enigma code owes
much to cryptanalysts desire to automate their mathematically based methods
for breaking ciphers. This continues with the National Security Agency (NSA)
being one of the largest single users of computing power in the world.

One could argue that cryptographers have been less scientific when design-
ing cryptosystems. They have often relied on intuition to guide their choice
of cipher. A common mistake that is repeated throughout the history of
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2 1 Basics of cryptography

cryptography is that a ‘complicated’ cryptosystem must be secure. As we will
see those cryptosystems which are currently believed to be most secure are
really quite simple to describe.

The massive increase in the public use of cryptography, driven partly by
the advent of the Internet, has led to a large amount of work attempting to put
cryptography on a firm scientific footing. In many ways this has been extremely
successful: for example it is now possible to agree (up to a point) on what it
means to say that a cryptographic protocol is secure. However, we must caution
against complacency: the inability to prove that certain computational problems
are indeed ‘difficult’ means that almost every aspect of modern cryptography
relies on extremely plausible, but nevertheless unproven, security assumptions.
In this respect modern cryptography shares some unfortunate similarities with
the cryptography of earlier times!

1.1 Cryptographic models

When discussing cryptographic protocols we necessarily consider abstract, ide-
alised situations which hopefully capture the essential characteristics of the real-
world situations we are attempting to model. In order to describe the various
scenarios arising in modern cryptography it is useful to introduce a collection
of now infamous characters with specific roles.

The players

Alice and Bob are the principal characters. Usually Alice wants to send a secret
message to Bob. Bob may also want her to digitally sign the message so that
she cannot deny sending it at a later date and he can be sure that the message
is authentic. Generally Alice and Bob are the good guys, but even this cannot
always be taken for granted. Sometimes they do not simply send messages. For
example they might try to toss a coin down the telephone line!

Eve is the arch-villain of the piece, a passive eavesdropper who can listen in to
all communications between Alice and Bob. She will happily read any message
that is not securely encrypted. Although she is unable to modify messages in
transit she may be able to convince Alice and Bob to exchange messages of her
own choosing.

Fred is a forger who will attempt to forge Alice’s signature on messages to
Bob.

Mallory is an active malicious attacker. He can (and will) do anything that
Eve is capable of. Even more worryingly for Alice and Bob he can also modify
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1.2 A basic scenario: cryptosystems 3

Alice BobC

C = e(M) M = d(C)

Fig. 1.1 Alice and Bob using a cryptosystem.

or even replace messages in transit. He is also sometimes known as the ‘man
in the middle’.

Peggy and Victor are the key players in identification schemes. In general
Peggy (the prover) must convince Victor (the verifier) of her identity. While
Victor must be careful that Peggy really is who she claims to be, Peggy must
also make sure that she does not provide Victor with information that will allow
him to impersonate her at a later stage.

Trent is a trusted central authority who plays different roles in different situa-
tions. One important responsibility he has is to act as a digital ‘passport agency’,
issuing certificates to Alice and Bob which allow them to identify themselves
convincingly to each other, hopefully enabling them to thwart Mallory.

Conveniently all of our characters have names starting with distinct letters
of the alphabet so we will sometimes refer to them by these abbreviations.

1.2 A basic scenario: cryptosystems

The first situation we consider is the most obvious: Alice and Bob wish to
communicate secretly. We assume that it is Alice who sends a message to Bob.

The fundamental cryptographic protocol they use is a cryptosystem or cipher.
Formally Alice has a message or plaintext M which she encrypts using an
encryption function e(·). This produces a cryptogram or ciphertext

C = e(M).

She sends this to Bob who decrypts it using a a decryption function d(·) to
recover the message

d(C) = d(e(M)) = M.

The above description explains how Alice and Bob wish to communicate but
does not consider the possible attackers or adversaries they may face. We first
need to consider what an adversary (say Eve the eavesdropper) is hoping to
achieve.

Eve’s primary goal is to read as many of Alice’s messages as possible.

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521617715 - Complexity and Cryptography: An Introduction
John Talbot and Dominic Welsh
Excerpt
More information

http://www.cambridge.org/0521617715
http://www.cambridge.org
http://www.cambridge.org


4 1 Basics of cryptography

Alice BobC

C = e(M,K ) M = d(C,K)

Fig. 1.2 Alice and Bob using a symmetric cryptosystem.

Alice BobC

C = e(M) M = d(C,K)

Fig. 1.3 Alice and Bob using a public key cryptosystem.

We assume that Eve knows the form of the cryptosystem Alice and Bob are
using, that is she knows the functions d(·) and e(·). Since she is eavesdropping
we can also assume that she observes the ciphertext C.

At this point Alice and Bob should be worried. We seem to be assuming that
Eve knows everything that Bob knows. In which case she can simply decrypt
the ciphertext and recover the message!

This reasoning implies that for a cryptosystem to be secure against Eve there
must be a secret which is known to Bob but not to Eve. Such a secret is called
a key.

But what about Alice, does she need to know Bob’s secret key? Until the
late twentieth century most cryptographers would have assumed that Alice must
also know Bob’s secret key. Cryptosystems for which this is true are said to be
symmetric.

The realisation that cryptosystems need not be symmetric was the single most
important breakthrough in modern cryptography. Cryptosystems in which Alice
does not know Bob’s secret key are known as public key cryptosystems.

Given our assumption that Eve knows the encryption and decryption func-
tions but does not know Bob’s secret key what type of attack might she mount?

The first possibility is that the only other information Eve has is the ciphertext
itself. An attack based on this information is called a ciphertext only attack (since
Eve knows C but not M). (See Figure 1.4.)

To assume that this is all that Eve knows would be extremely foolish. History
tells us that many cryptosystems have been broken by cryptanalysts who either
had access to the plaintext of several messages or were able to make inspired
guesses as to what the plaintext might be.
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1.2 A basic scenario: cryptosystems 5

Alice Bob

Eve
C

C

C = e(M) M = d(C,K)

Fig. 1.4 Eve performs a ciphertext only attack.

Alice Bob

Eve

C

C,M

C = e(M) M = d(C,K)

Fig. 1.5 Eve performs a known plaintext attack.

A more realistic attack is a known plaintext attack. In this case Eve also
knows the message M that is encrypted. (See Figure 1.5.)

An even more dangerous attack is when Eve manages to choose the mes-
sage that Alice encrypts. This is known as a chosen plaintext attack and is the
strongest attack that Eve can perform. (See Figure 1.6.)

On the face of it we now seem to be overestimating Eve’s capabilities to
influence Alice and Bob’s communications. However, in practice it is reasonable
to suppose that Eve can conduct a chosen plaintext attack. For instance she may
be a ‘friend’ of Alice and so be able to influence the messages Alice chooses
to send. Another important possibility is that Alice and Bob use a public key
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6 1 Basics of cryptography

Alice Bob

Eve

C

M
C,M

C = e(M) M = d(C,K)

Fig. 1.6 Eve performs a chosen plaintext attack.

MalloryAlice BobC

C = e(M)

??

??

Fig. 1.7 Alice and Bob using a cryptosystem attacked by Mallory.

cryptosystem and so Eve can encrypt any message she likes since encryption
does not depend on a secret key.

Certainly any cryptosystem that cannot withstand a chosen plaintext attack
would not be considered secure.

From now on we will assume that any adversary has access to as many
chosen pairs of messages and corresponding cryptograms as they can possibly
make use of.

There is a different and possibly even worse scenario than Eve conducting a
chosen plaintext attack. Namely Mallory, the malicious attacker, might interfere
with the cryptosystem, modifying and even replacing messages in transit. (See
Figure 1.7.)

The problems posed by Mallory are rather different. For example, he may
pretend to be Bob to Alice and Alice to Bob and then convince them to divulge
secrets to him! We will see more of him in Chapter 9.

We now need to decide two things.

(1) What can Eve do with the message-cryptogram pairs she obtains in a
chosen message attack?

(2) What outcome should Alice and Bob be happy with?
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1.3 Classical cryptography 7

There are two very different approaches to cryptographic security, depending
essentially on how we answer these questions.

Historically the first rigorous approach to security was due to Shannon
(1949a). In his model Eve is allowed unlimited computational power and Alice
and Bob then try to limit the ‘information’ Eve can obtain about future mes-
sages (and Bob’s secret key) given her message-cryptogram pairs. He was able
to show that there are cryptosystems that are perfectly secure in this model.
However, he also showed that any such cryptosystem will have some rather
unfortunate drawbacks, principally the key must be as long as the message that
is sent.

Modern cryptography is based on a complexity theoretic approach. It starts
with the assumption that Eve has limited computational resources and attempts
to build a theory of security that ensures Eve is extremely unlikely to be able
to read or obtain any useful information about future messages.

We briefly outline the two approaches below.

1.3 Classical cryptography

Consider the following situation. Alice wishes to send Bob n messages. Each
message is either a zero or a one. Sometime earlier Alice and Bob met and
flipped an unbiased coin n times. They both recorded the sequence of random
coin tosses as a string K ∈ {H, T}n and kept this secret from Eve.

Alice encrypts her messages M1, M2, . . . , Mn as follows.

Ci = e(Mi ) =
{

Mi , if Ki = H,

Mi ⊕ 1, if Ki = T.

(Here ⊕ denotes ‘exclusive or’ (XOR), so 0 ⊕ 0 = 1 ⊕ 1 = 0 and 1 ⊕ 0 =
0 ⊕ 1 = 1.)

Alice then sends the cryptograms C1, . . . , Cn to Bob, one at a time.
Bob can decrypt easily, since he also knows the sequence of coin tosses, as

follows

Mi = d(Ci ) =
{

Ci , if Ki = H,

Ci ⊕ 1, if Ki = T.

So encryption and decryption are straightforward for Alice and Bob. But what
about Eve? Suppose she knows both the first n − 1 cryptograms and also the
corresponding messages. Then she has n − 1 message-cryptogram pairs

(C1, M1), (C2, M2), . . . , (Cn−1, Mn−1).
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8 1 Basics of cryptography

If Eve is then shown the final cryptogram Cn what can she deduce about
Mn?

Well since Kn was a random coin toss there is a 50% chance that Cn = Mn

and a 50% chance that Cn = Mn ⊕ 1. Since Kn was independent of the other
key bits then knowledge of these will not help. So what can Eve do?

Suppose for the moment that the messages that Alice sent were also the result
of another series of independent coin tosses, that is they were also a random
sequence of zeros and ones. In this case Eve could try to guess the message Mn

by tossing a coin herself: at least she would have a 50% chance of guessing
correctly. In fact this is the best she can hope for!

But what if the messages were not random? Messages usually contain useful
(non-random) information. In this case Eve may know something about how
likely different messages are. For instance she may know that Alice is far more
likely to send a one rather than a zero. If Eve knows this then she could guess
that Mn = 1 and would be correct most of the time. However, she could have
guessed this before she saw the final cryptogram Cn . Eve has gained no new
information about the message by seeing the cryptogram. This is the basic idea
of perfect secrecy in Shannon’s model of cryptography.

� The cryptogram should reveal no new information about the message.

This theory will be developed in more detail in Chapter 5.

1.4 Modern cryptography

Modern cryptography starts from a rather different position. It is founded on
complexity theory: that is the theory of how easy or difficult problems are to
solve computationally.

Modern cryptographic security can informally be summarised by the fol-
lowing statement.

� It should not matter whether a cryptogram reveals information about the
message. What matters is whether this information can be efficiently
extracted by an adversary.

Obviously this point of view would be futile if we were faced with an adversary
with unbounded computational resources. So we make the following assump-
tion.

� Eve’s computational resources are limited.
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1.4 Modern cryptography 9

If we limit Eve’s computational resources then we must also limit those
of Alice and Bob. Yet we still require them to be able to encrypt and decrypt
messages easily. This leads to a second assumption.

� There exist functions which are ‘easy’ to compute and yet ‘hard’ to invert.
These are called one-way functions.

Given this assumption it is possible to construct cryptosystems in which there
is a ‘complexity theoretic gap’ between the ‘easy’ procedures of decryption
and encryption for Alice and Bob; and the ‘hard’ task of extracting information
from a cryptogram faced by Eve.

To discuss this theory in detail we need to first cover the basics of complexity
theory.
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2

Complexity theory

2.1 What is complexity theory?

Computers have revolutionised many areas of life. For example, the human
genome project, computational chemistry, air-traffic control and the Internet
have all benefited from the ability of modern computers to solve computa-
tional problems which are far beyond the reach of humans. With the continual
improvements in computing power it would be easy to believe that any computa-
tional problem we might wish to solve will soon be within reach. Unfortunately
this does not appear to be true. Although almost every ‘real’ computational
problem can, in theory, be solved by computer, in many cases the only known
algorithms are completely impractical. Consider the following computational
problem.

Example 2.1 The Travelling Salesman Problem.

Problem: given a list of n cities, c1, c2, . . . , cn and an n × n symmetric matrix
D of distances, such that

Di j = distance from city ci to city c j ,

determine an optimal shortest tour visiting each of the cities exactly once.

An obvious naive algorithm is: ‘try all possible tours in turn and choose the
shortest one’. Such an algorithm will in theory work, in the sense that it will
eventually find the correct answer. Unfortunately it will take a very long time to
finish! If we use this method then we would need to check n! tours, since there
are n! ways to order the n cities. More efficient algorithms for this problem exist,
but a common trait they all share is that if we have n cities then, in the worst
case, they may need to perform at least 2n operations. To put this in perspective
suppose we had n = 300, a not unreasonably large number of cities to visit.
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