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Preface

“I think there’s a revolution in mathematics around the corner. I think

that . . . people will look back on the fin-de-siècle of the twentieth century

and say ‘Then is when it happened’ (just like we look back at the Greeks

for inventing the concept of proof and at the nineteenth century for making

analysis rigorous). I really believe that. And it amazes me that no one

seems to notice.

“Never before have the Platonic mathematical world and the physical

world been this similar, this close. Is it strange that I expect leakage be-

tween these two worlds? That I think the proof strings will find their way

to the computer memories?. . .

“What I expect is that some kind of computer system will be created,

a proof checker, that all mathematicians will start using to check their

work, their proofs, their mathematics. I have no idea what shape such a

system will take. But I expect some system to come into being that is past

some threshold so that it is practical enough for real work, and then quite

suddenly some kind of ‘phase transition’ will occur and everyone will be

using that system.”

–Freek Wiedijk [49]
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viii Preface

Alecos: Christos has a problem with the ‘foundational quest’!

Christos: Wrong! I have two problems with your version of it! One, it

didn’t fail and, two, it wasn’t a tragedy! Granted, there are some tragic

parts! But the ending is happy, as in the ‘Oresteia’!

Apostolos: Happy for whom? Cantor, going insane? Gödel starving him-

self to death out of paranoia? Hilbert or Russell and their psychotic sons?

Or Frege with–

Christos: ‘The meaning is in the ending!’ you said so yourself! So, follow

the quest for ten more years and you get a brand-new triumphant finale

with the creation of the computer, which is the quest’s real hero! Your

problem is, simply, that you see it as a story of people!

Apostolos: Well, stories do tend to be about people!

Christos: So, choose the right people! And show what they really did! All

we we learn of the great von Neumann is he said ‘It’s over’ when he heard

Gödel!

Alecos: But it was over in a sense, wasn’t it? Pop went Hilbert’s ‘no ig-

norabimus’!

Christos: But then came the quest’s jeune premier, its parsifal . . . Alan

Turing! He said ‘Ok, we can’t prove everything! So, let’s see what we can

prove!’ and to define proof, he invented, in 1936, a theoretical machine

which contains all the ideas of the computer!. . . which, after the war, he

and von Neumann, the quest’s proudest sons, brought to full life!

–Doxiadis and Papadimitriou, Logicomix [10]
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Preface ix

“Despite the unusual nature of the proof, the editors of the Annals of

Mathematics agreed to publish it, provided it was accepted by a panel of

twelve referees. In 2003, after four years of work, the head of the referee’s

panel Gábor Fejes Tóth (son of László Fejes Tóth) reported that the panel

were ‘99% certain’ of the correctness of the proof.”

– Wikipedia entry on the Kepler conjecture

“Sometimes fixing a 1 percent defect takes 500 percent effort.”

– Joel Spolsky, Joel on Software [42]

“Every one fully persuaded is a fool.”

– Barthasar Gracián, the Art of Worldly Wisdom [17]
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x Preface

The Kepler Conjecture

In 1611, Johannes Kepler wrote a booklet in which he asserted that the familiar

cannonball arrangement of congruent balls in space achieves the highest pos-

sible density. This assertion has become known as the Kepler conjecture. This

book presents a proof.

As early as 1831, Gauss established a special case of the conjecture, by prov-

ing that the cannonball arrangement is optimal among all lattices [14]. Later in

the nineteenth century, Thue solved the corresponding problem in two dimen-

sions, showing that the hexagonal arrangement of disks in the plane achieves

optimal density [45] and [46]. Hilbert, in his famous list of mathematical prob-

lems, made the Kepler conjecture part of his eighteenth problem. In 1953, Fejes

Tóth formulated a general strategy to confirm the Kepler conjecture, but lacked

the computational resources to carry it out [12]. The conjecture was finally re-

solved in 1998, even though the full proof was not published until 2006 [22].

Section 1.1 gives additional historical background.

The Kepler conjecture has become a test of the capability of computers to

deliver a reliable mathematical proof. The original proof involved many long

computer calculations that led a team of referees to exhaustion. This book has

redesigned the proof in a way that makes the correctness of the computer proof

as transparent as possible.

Formal Proofs

After all is said and done, a proof is only as reliable as the processes that are

used to verify its correctness. The ultimate standard of proof is a formal proof,

which is nothing other than an unbroken chain of logical inferences from an

explicit set of axioms. While this may be the mathematical ideal of proof,

actual mathematical practice generally deviates significantly from the ideal.

In recent years, as part of this project, I have been increasingly preoccupied

by the processes that mathematicians rely on to ensure the correctness of com-

plex proofs. A century ago, Russell’s paradox and other antinomies threatened

set theory with fires of destruction. Researchers from Frege to Gödel solved

the problem of rigor in mathematics and found a theoretical solution but did

not extinguish the fire at the foundations of mathematics because they omitted

the practical implementation. Some, such as Bourbaki, have even gone so far

as to claim that “formalized mathematics cannot in practice be written down

in full” and call such a project “absolutely unrealizable” [7, pp. 10–11].

While it is true that formal proofs may be too long to print, computers –
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Preface xi

which do not have the same limitations as paper – have become the natural host

of formal mathematics. In recent decades, logicians and computer scientists

have reworked the foundations of mathematics, putting them in an efficient

form designed for real use on real computers.

For the first time in history, it is possible to generate and verify every single

logical inference of major mathematical theorems. This has now been done for

many theorems, including the four-color theorem, the prime number theorem,

the Jordan curve theorem, the Brouwer fixed point theorem, and the funda-

mental theorem of calculus. Freek Wiedijk reports that 87% of a list of one

hundred famous theorems have now been checked formally [50]. The list of

remaining theorems contains two particular challenges: the independence of

the Continuum hypothesis and Fermat’s Last theorem.

Some mathematicians remain skeptical of the process because computers

have been used to generate and verify the logical inferences. Computers are no-

toriously imperfect, with flaws ranging from software bugs to defective chips.

Even if a computer verifies the inferences, who verifies the verifier, or then ver-

ifies the verifier of the verifier? Indeed, it would be unscientific of us to place

an unmerited trust in computers.

The choice comes down to two competing verification processes. The first

is the traditional process of referees, which depends largely on the luck of the

draw – some referees are meticulous, while others are careless. The second

process is formal computer verification, which is less dependent on the whims

of a particular referee. In my view, the choice between the conventional process

by human referee and computer verification is as evident as the choice between

a sundial and an atomic clock in science.

The standard of proof I have adopted is the highest scientific standard avail-

able by current technology. The introduction of steel in architecture is not a

mere reinforcement of wood and stone; it changes the world of structural pos-

sibilities. There is no longer any reason to limit proofs to ten thousand pages

when our technology supports a million pages.

The style of formal proofs is different from that of conventional ones. It is

easier to formalize several short snappy proofs than a few intricate ones. Hu-

mans enjoy surprising new perspectives, but computers benefit from repetition

and standardization. Despite these differences, I have sought proofs that might

bring pleasure to the human reader while providing precise instructions for the

implementation in silicon.
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xii Preface

Conventions

To make formalization proceed more smoothly, long proofs have been broken

into a sequence of smaller claims. Each claim starts a new paragraph and is set

in italics. The second sentence of the paragraph begins with the word indeed

when the proof of the claim is direct and with the word otherwise when the

proof is indirect by contradiction.

Lemmas and theorems that are marked with an asterisk appear out of the

natural logical sequence. Care should be taken to avoid logical gaps when they

are cited.

The pronoun we is used inclusively for the author and reader as we work our

way through the proofs in this book. The pronoun I refers to the author alone.

The asterisk ∗ is used as a wildcard symbol in patterns. It replaces a term in

contexts where the name of the term is not relevant. It can also denote a bound

variable. For example, the function f (∗, y) of a single variable is obtained from

f by evaluating the second argument at a fixed value y.

The union of the family X of sets is written as
⋃

X or as
⋃

x∈X x without

any difference in meaning. The first form is preferred because of its economy.

We also use both expressions
⋂

X and
⋂

x∈X x for the intersection of a family

of sets.

The documentation of the computer calculations for the Kepler conjecture

has evolved over time. The 1998 preprint version of the proof of the Kepler

conjecture contains long appendices that list hundreds of calculations that en-

ter into the proof. These appendices were cut from the published version of the

proof because it is more useful to store the computer part of the proof at a com-

puter code repository that is permanent, versioned, and freely available. The

computer code and documentation are housed at Google Code project host-

ing. Separate documentation, which is available at the project site, describes

the computer calculations that appear in this book. When this book uses an

external calculation, it is marked in italic font as a computer calculation1 [21].

A Blueprint

The book is a blueprint for formal proofs because it gives the design of the

formal proof to be constructed. The parts of this book that cover the text por-

tions of the proof of the Kepler conjecture are being formally verified in the

proof assistant HOL Light. I dream of a fully formally verified solution to the

1 [notation] This explains notation.
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Preface xiii

proof that includes the computer portions of the proof as well. Details about

and credits for this large team effort appear in Appendix A.

Decisions about what to include in this book have been shaped by the list

of theorems already available in the library of the proof assistant HOL Light.

For example, this book accepts basic point-set topology and measure theory

because they have been formalized by Harrison [26].

The book is divided into three parts, the first of which describes the major

ideas, methods, and organization of the proof.

The part on foundations provides background material about constructions

in discrete geometry. The first of these chapters covers trigonometric identities

and basic vector geometry. The second treats volume from an elementary point

of view. The third chapter covers planar graph theory from a purely combina-

torial perspective. The fourth chapter continues with planar graphs, now from

a geometric perspective.

The final part of the book gives the solution to the packing problem. The first

of these chapters gives a top-level overview of the major steps of the proof,

describing how the problem can be reduced from a problem with infinitely

many variables to one in finitely many variables. The remaining chapters in

this part flesh out the proof.

The final section of the book views dense sphere packings from a larger

perspective. It resolves another longstanding conjecture in discrete geometry:

Bezdek’s strong dodecahedral conjecture.

Simplifications

Many simplifications of the original proof have been found over the past sev-

eral years. These simplifications are published here for the first time. Gonthier

has reworked the proof of the four-color theorem to avoid the use of the Jordan

curve theorem, using instead the much simpler notion of Möbius contour from

the theory of hypermaps. I have followed Gonthier’s lead.

The optimality of the face-centered cubic packing is an assertion about infi-

nite space-filling packings. For computational purposes, it is useful to reduce

the sphere packing problem to finite packings. A correction term is associ-

ated with each different reduction from infinite packings to finite packings.

Ferguson and I worked together to produce the original proof of the Kepler

conjecture. The two of us considered a large number of different correction

terms, seeking one that would simplify the computations as much as possible.

In a discussion of the solution of the packing problem, I wrote that “correction

terms are extremely flexible and easy to construct, and soon Samuel Fergu-
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son and I realized that every time we encountered difficulties in solving the

minimization problem, we could adjust f [the correction term] to skirt the dif-

ficulty. . . . If I were to revise the proof to produce a simpler one, the first thing

I would do would be to change the correction term once again. It is the key

to a simpler proof” [19]. Marchal has recently found a simple correction term,

giving a new way to reduce from infinite packings to finite packings [31]. This

book implements his reduction step.

There are many other improvements of the proof that are not visible in the

book because they are implemented in computer code, including a reduction

of the number of lines of computer code from over 187,000 to about 10,000.

Needless to say, the quickest way to be sure that a block of computer code will

not execute a bug is to delete the code altogether.

Thomas C. Hales

Pittsburgh, PA
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