Cambridge University Press 0521617235 - Mathematical Modeling in Continuum Mechanics, Second Edition Roger Temam and Alain Miranville Table of Contents More information

Contents

Pre A f	eface	ords about notations	<i>page</i> ix xi
11)			
	PA	RT I FUNDAMENTAL CONCEPTS IN CONTINUUM	
		MECHANICS	
1	Des	cribing the motion of a system: geometry and kinematics	3
	1.1	Deformations	3
	1.2	Motion and its observation (kinematics)	6
	1.3	Description of the motion of a system: Eulerian and	
		Lagrangian derivatives	10
	1.4	Velocity field of a rigid body: helicoidal vector fields	13
	1.5	Differentiation of a volume integral depending on a parameter	18
2	The	fundamental law of dynamics	24
	2.1	The concept of mass	24
	2.2	Forces	30
	2.3	The fundamental law of dynamics and its first consequences	32
	2.4	Application to systems of material points and to rigid bodies	34
	2.5	Galilean frames: the fundamental law of dynamics expressed	
		in a non-Galilean frame	38
3	The	Cauchy stress tensor and the Piola-Kirchhoff	
	tens	sor. Applications	42
	3.1	Hypotheses on the cohesion forces	42
	3.2	The Cauchy stress tensor	45
	3.3	General equations of motion	48
	3.4	Symmetry of the stress tensor	50
	3.5	The Piola-Kirchhoff tensor	52

v

on

vi	Contents	
4	 Real and virtual powers 4.1 Study of a system of material points 4.2 General material systems: rigidifying velocities 4.3 Virtual power of the cohesion forces: the general case 4.4 Real power: the kinetic energy theorem 	57 57 61 63 67
5	 Deformation tensor, deformation rate tensor, constitutive laws 5.1 Further properties of deformations 5.2 The deformation rate tensor 5.3 Introduction to rheology: the constitutive laws 5.4 Appendix. Change of variable in a surface integral 	70 70 75 77 87
6	Energy equations and shock equations6.1 Heat and energy6.2 Shocks and the Rankine–Hugoniot relations	90 90 95
	PART II PHYSICS OF FLUIDS	
7	General properties of Newtonian fluids7.1 General equations of fluid mechanics7.2 Statics of fluids7.3 Remark on the energy of a fluid	103 103 109 114
8	Flows of inviscid fluids 8.1 General theorems 8.2 Plane irrotational flows 8.3 Transsonic flows 8.4 Linear accoustics	116 116 120 130 134
9	 Viscous fluids and thermohydraulics 9.1 Equations of viscous incompressible fluids 9.2 Simple flows of viscous incompressible fluids 9.3 Thermohydraulics 9.4 Equations in nondimensional form: similarities 9.5 Notions of stability and turbulence 9.6 Notion of boundary layer 	137 137 138 144 146 148 152
10	 Magnetohydrodynamics and inertial confinement of plasmas 10.1 The Maxwell equations and electromagnetism 10.2 Magnetohydrodynamics 10.3 The Tokamak machine 	158 159 163 165
11	Combustion 11.1 Equations for mixtures of fluids	172 172

Cambridge University Press	
0521617235 - Mathematical Modeling in Continuum Mechanics, Second Edition	n
Roger Temam and Alain Miranville	
Table of Contents	
More information	

	Contents	vii
	11.2 Equations of chemical kinetics	174
	11.3 The equations of combustion	176
	11.4 Stefan–Maxwell equations	178
	11.5 A simplified problem: the two-species model	181
12	Equations of the atmosphere and of the ocean	185
	12.1 Preliminaries	186
	12.2 Primitive equations of the atmosphere	188
	12.3 Primitive equations of the ocean	192
	12.4 Chemistry of the atmosphere and the ocean	193
	Appendix. The differential operators in spherical coordinates	195
	PART III SOLID MECHANICS	
13	The general equations of linear elasticity	201
	13.1 Back to the stress-strain law of linear elasticity: the	
	elasticity coefficients of a material	201
	13.2 Boundary value problems in linear elasticity: the	
	linearization principle	203
	13.3 Other equations	208
	13.4 The limit of elasticity criteria	211
14	Classical problems of elastostatics	215
	14.1 Longitudinal traction-compression of a cylindrical bar	215
	14.2 Uniform compression of an arbitrary body	218
	14.3 Equilibrium of a spherical container subjected to	
	external and internal pressures	219
	14.4 Deformation of a vertical cylindrical body under the	
	action of its weight	223
	14.5 Simple bending of a cylindrical beam	225
	14.6 Torsion of cylindrical shafts	229
	14.7 The Saint-Venant principle	233
15	Energy theorems, duality, and variational formulations	235
	15.1 Elastic energy of a material	235
	15.2 Duality – generalization	237
	15.3 The energy theorems	240
	15.4 Variational formulations	243
	15.5 Virtual power theorem and variational formulations	246
16	Introduction to nonlinear constitutive laws and	
	to homogenization	248
	16.1 Nonlinear constitutive laws (nonlinear elasticity)	249

Cambridge University Press	
0521617235 - Mathematical Modeling in Continuum Mechanics, Second Edit	tion
Roger Temam and Alain Miranville	
Table of Contents	
More information	

viii	Contents	
	16.2 Nonlinear elasticity with a threshold	
	(Henky's elastoplastic model)	251
	16.3 Nonconvex energy functions	253
	16.4 Composite materials: the problem of homogenization	255
17	Nonlinear elasticity and an application to biomechanics	259
	17.1 The equations of nonlinear elasticity	259
	17.2 Boundary conditions – boundary value problems	262
	17.3 Hyperelastic materials	264
	17.4 Hyperelastic materials in biomechanics	266
	PART IV INTRODUCTION TO WAVE PHENOMENA	
18	Linear wave equations in mechanics	271
	18.1 Returning to the equations of linear acoustics and	
	of linear elasticity	271
	18.2 Solution of the one-dimensional wave equation	275
	18.3 Normal modes	276
	18.4 Solution of the wave equation	281
	18.5 Superposition of waves, beats, and packets of waves	285
19	The soliton equation: the Korteweg–de Vries equation	289
	19.1 Water-wave equations	290
	19.2 Simplified form of the water-wave equations	292
	19.3 The Korteweg-de Vries equation	295
•••		295
20	The nonlinear Schrödinger equation	303
	20.1 Maxwell equations for polarized media	304
	20.2 Equations of the electric field: the finear case	200
	20.5 General case	212
	20.5 Soliton solutions of the NLS equation	316
Ap	pendix. The partial differential equations of mechanics	319
Hir	its for the exercises	321
Ref	erences	332
Ind	ex	337