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FUNDAMENTAL CONCEPTS

IN CONTINUUM MECHANICS
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CHAPTER ONE

Describing the motion of a system:
geometry and kinematics

1.1. Deformations

The purpose of mechanics is to study and describe the motion of material
systems. The language of mechanics is very similar to that of set theory
in mathematics: we are interested in material bodies or systems, which are
made of material points or matter particles. A material system fills some part
(a subset) of the ambient space (R3), and the position of a material point is
given by a point in R

3; a part of a material system is called a subsystem.
We will almost exclusively consider material bodies that fill a domain

(i.e., a connected open set) of the space. We will not study the mechanically
important cases of thin bodies that can be modeled as a surface (plates, shells)
or as a line (beams, cables). The modeling of the motion of such systems
necessitates hypotheses that are very similar to the ones we will present in
this book, but we will not consider these cases here.

A material system fills a domain �0 in R
3 at a given time t0. After de-

formation (think, for example, of a fluid or a tennis ball), the system fills a
domain � in R

3. A material point, whose initial position is given by the point
a ∈ �0, will be, after transformation, at the point x ∈ �.

The deformation can thus be characterized by a mapping as follows (see
Figure 1.1):

�: a ∈ �0 �→ x ∈ �.

Assuming that matter is conserved during the deformation, we are led to
make the following natural hypothesis:

The function � is one – to – one from �0 onto �.

We will further assume that the deformation � is a smooth application of
class C1 at least, from �0 into �, as well as its inverse (C1 from � onto �0).
In fact we assume that � is as smooth as needed.

3
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4 Mathematical Modeling in Continuum Mechanics
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Figure 1.1 The mapping �.

Regularity assumption

The regularity assumption made on � will actually be general; we will as-
sume that all the functions we introduce are as regular as needed for all the
mathematical operations performed to be justified (e.g., integration by parts,
differentiation of an integral depending on a parameter, etc.). This hypothesis,
which will be constantly assumed in the following, will only be weakened
in Chapter 6 for the study of shock waves, which correspond to the appear-
ance of discontinuity surfaces. In that case, we will assume that the map � is
piecewise C1. This assumption must be weakened also for the study of other
phenomena which will not be considered here, such as singular vortices for
fluids, dislocations for solids, or collisions of rigid bodies.

Let grad �(a) = ∇�(a) be the matrix whose entries are the quantities
(∂�i/∂a j )(a); this is the Jacobian matrix of the mapping a �→ x also denoted
sometimes Dx/Da. Because �−1 is differentiable, the Jacobian det (∇�) of
the transformation a �→ x is necessarily different from zero. We will assume
in the following that it is strictly positive; the negative sign corresponds to
the nonphysical case of a change of orientation (a left glove becoming a right
glove). We will later study the role played by the linear tangent map at point
a in relation to the Taylor formula

�(a) = �(a0) + ∇�(a0) · (a − a0) + o(|a − a0|).
We will also introduce the dilation tensor to study the deformation of a “small”
tetrahedron.

Displacement

Definition 1.1. Themap u : a �→ x−a = �(a)−a is called the displacement;
u(a) is the displacement of the particle a.
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Describing the motion of a system: geometry and kinematics 5

Elementary deformations

Our aim here is to describe some typical elementary deformations.

a) Rigid deformations

The displacement is called rigid (in this case, we should no longer talk about
deformations) when the distance between any pair of points is conserved as
follows:

d(a, a′) = d(x, x ′), ∀ a, a′ ∈ �0,

where x = �(a), x ′ = �(a′). This is equivalent to assuming that

� is an isometry from �0 onto �,

or, when �0 is not included in an affine subspace of dimension less than or
equal to 2,

� is an affine transformation

(translation + rotation).

In this case

x = L · a + c, c ∈ R
3, L ∈ L0(R3), L−1 = LT ,

and

u(a) = (L − I )a + c,

where L0(R3) is the space of orthogonal matrices on R
3.

b) Linear compression or elongation

A typical example of elongation is given by the linear stretching of an elastic
rod or of a linear spring.

Let (e1, e2, e3) be the canonical basis of R
3. The uniform elongation in the

direction e = e1 reads

x1 = λa1, x2 = a2, x3 = a3,

with λ > 1; 0 < λ < 1 would correspond to the uniform compression of
a linear spring or an elastic rod. The displacement is then given by u(a) =
[(λ − 1)a1, 0, 0] and

∇� =



λ − 1 0 0
0 0 0
0 0 0


 + I.
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6 Mathematical Modeling in Continuum Mechanics

c) Shear

We consider here simple shear in two orthogonal directions. Such a deforma-
tion occurs, for instance, when one tears a sheet of paper.

The shear in the direction e1 parallel to the direction e2 reads



x1 = a1 + ρa2,

x2 = a2 + ρa1,

x3 = a3,

where ρ > 0; hence, the displacement is given by

u(a) =



ρa2

ρa1

0


 ,

and

∇� =




0 ρ 0

ρ 0 0

0 0 0


 + I.

Remark 1.1: We will see in what follows that, in some sense, a general defor-
mation can be decomposed into proper elementary deformations of the types
above.

1.2. Motion and its observation (kinematics)

Kinematics is the study of the motion of a system related to an observer, which
is called the reference system.

With kinematics, we need to introduce two new elements:

• A privileged continuous parameter t corresponding to time. This implies
the choice of a chronology; that is, a way to measure time.1

• A given system of linear coordinates, or frame of reference, that is “fixed”
with respect to the observer. It is defined, in the affine space, by its origin
O and three orthonormal basis vectors e1, e2, e3.

1 From a strictly mathematical point of view, it would not be absurd, for example, to replace
t by t3, but this would change the notion of time interval, and the time t = 0 would play a
particular role, which it does not.
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Describing the motion of a system: geometry and kinematics 7
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Figure 1.2 The motion of a system.

Definition 1.2. A reference system is defined by the choice of a chronology
and a frame of reference.2

The chronology is fixed once and for all, but, hereafter, we will consider
several frames of reference, depending on our objectives.

The motion of the system under consideration is observed during a time
interval I ⊂ R. At each instant t ∈ I , the system fills a domain �t ⊂ R

3. The
motion is then geometrically defined by a family of deformation mappings,
depending on the time t ∈ I (see Figure 1.2). We denote by �(t, t0) the
diffeomorphism

a ∈ �t0 �→ x = �(a, t, t0) ∈ �t ,

which maps the position a at time t0 to the position x at time t, and we make
the following natural hypotheses:

• �(t0, t0) = I,
• �(t ′, t) ◦ �(t, t0) = �(t ′, t0), and
• the maps (t, a) �→ �(a, t, t0) are at least of class C1 (except in the case

of shock waves).

Definition 1.3. A material system is a rigid body if and only if the maps
�(t, t ′) are isometries for every t and t ′.

Explicit representation of the motion

We are given a reference time t0, and we choose for point O the origin of the
frame of reference in the affine space. The position of the material point M

2 We will not emphasize any more these very profound considerations, which can lead, depend-
ing on the point of view that is pursued, to nonclassic mechanics (e.g., relativity or quantum
mechanics).
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8 Mathematical Modeling in Continuum Mechanics

is defined at each time t by the vector
−→
OM ; we thus write

−→
OM = x = �(a, t, t0),

or more simply, omitting t0,
−→
OM = x = �(a, t).

Trajectory of a particle

We consider a particle defined by its position a at time t0. The trajectory of
this particle is the curve {�(a, t, t0)}t∈I ; I is the interval of time during which
the motion is observed.

Velocity of a particle

The velocity of the material point M occupying the position x at time t is the
vector

U = U (x, t) = ∂�

∂t
(a, t, t0).

Remark 1.2: Of course, we consider the derivatives with respect to the given
frame of reference, and the velocity is thus considered with respect to the
same system.

Property 1.1. The vector U is independent of the reference time t0.

Proof: Let M be a particle occupying the positions x at time t, a at t0 and a′

at t ′0 (t > t0 > t ′0). Thus,
−→
OM = x = �(a, t, t0) = �(a′, t, t ′0),

and

a = �(a′, t0, t ′0).

Thus,

x = �[�(a′, t0, t ′0), t, t0] = �(a′, t, t ′0),

where a′, t0, and t ′0 are fixed. We set

h(t) = �[�(a′, t0, t ′0), t, t0],

�(t) = �(a′, t, t ′0).
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Describing the motion of a system: geometry and kinematics 9

We easily verify that (dh/dt) = (d�/dt), which accounts for the result.

Acceleration of a particle

The acceleration of the material particle M occupying the position x at time t
is the vector

γ = γ (x, t) = ∂2�

∂t2
(a, t, t0).

Property 1.2. The vector γ is independent of the reference time t0 (same
proof as for the velocity).

Remark 1.3: Of course, the vectorsU and γ depend on the frame of reference
and on the chronology we have chosen.

We will see in Section 1.3 why we prefer to write U (x, t) and γ (x, t)
instead of U (a, t) and γ (a, t).

Stream lines

The stream lines are defined at a time t ; they are the lines whose tangent at
each point is parallel to the velocity vector at this point.

If U (x, t) is the velocity vector at time t and at x ∈ �t , computing the
stream lines is equivalent to solving the differential system

dx1

U1(x1, x2, x3, t)
= dx2

U2(x1, x2, x3, t)
= dx3

U3(x1, x2, x3, t)
.

In practice, this system can be solved explicitly by analytic methods only
rarely. However, its numerical solution on a computer is easy. For computer
simulations of flows, these equations are numerically integrated to obtain
the stream lines repeatedly in order to visualize the flow (e.g., movie-type
animation).

Remark 1.4: The stream lines are different from the trajectories. However,
in the case of a stationary motion (defined below) the stream lines and the
trajectories coincide.
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10 Mathematical Modeling in Continuum Mechanics

1.3. Description of the motion of a system: Eulerian and
Lagrangian derivatives

Lagrangian description of the motion of a system
(description by the trajectories)

The Lagrangian description of the motion is the one we have considered until
now. It consists of giving the trajectory of each particle starting from the initial
position, for instance from time t = 0:

x = �(a, t) = �(a, t, 0), a ∈ �0.

The velocity and acceleration fields are then, respectively, the vector fields
(∂�/∂t)(a, t) and (∂2�/∂t2)(a, t).

This description is too rich for most practical purposes, and it is not used
in general. It is, however, very useful for mathematical analysis and for some
very specific situations. In general, we prefer to use the Eulerian description
of the motion.

Eulerian description of the motion of a system
(description by the velocity field)

In this description, we are given at each time t the velocity field U = U (x, t),
where U (x, t) is the velocity of the material particle occupying the position
x at time t.

Theoretically, we can recover from this velocity field the trajectories and
the Lagrangian description of the motion by solving the following differential
equations:



dx

dt
= U (x, t),

x(0) = a,

the solution of which is x = xa(t) = �(a, t). Similarly, we can compute
the stream lines by solving for x (t being a fixed parameter) the differential
system

dx1

U1
= dx2

U2
= dx3

U3
.

Definition 1.4. A motion is steady or stationary if and only if �t = �0, ∀t ,
and the Eulerian velocity field is independent of t , that is, U (x, t) ≡ U (x),
∀t .
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Describing the motion of a system: geometry and kinematics 11

We emphasize here the fact that a body undergoing a stationary motion is
not at rest.

As we said before, the trajectories and streamlines of a stationary flow are
the same.

Eulerian and Lagrangian derivatives

Consider a particle M occupying the position a at time t = 0 and the position
x at time t . A function f = f (M, t) associated with a particle M (e.g., its
velocity, acceleration, or other physical quantities to be defined subsequently)
can be represented in two different ways during the motion:

f (M, t) = g(a, t) or f (M, t) = h(x, t),

where x = �(a, t); that is to say

h(�(a, t), t) = g(a, t).

Definition 1.5.

1. The Eulerian derivatives of f are the quantities
∂h

∂xi
(x, t),

∂h

∂t
(x, t).

2. The Lagrangian derivatives of f are the quantities
∂g

∂ai
(a, t),

∂g

∂t
(a, t).

In mechanical engineering the derivative (∂g/∂t)(a, t) is denoted dh/dt
or Dh/Dt (or d f/dt or Df/Dt) and is sometimes called the total derivative
of f .

We deduce from the relation

h(�(a, t), t) = g(a, t),

that

∂g

∂a j
(a, t) = ∂h

∂xk

∂xk
∂a j

= ∂h

∂xk
(x, t)

∂�k

∂a j
(a, t),

where we have used the Einstein summation convention on the indices.

Property 1.3. We have the following relation:

∂g

∂t
= Dh

Dt
= ∂h

∂t
+ (U · ∇)h.
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