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A New Foreword

Richard D. Canary∗

The article “Notes on Notes of Thurston” was intended as an exposition of

some portions of Thurston’s lecture notes The Geometry and Topology of

Three-Manifolds. The work described in Thurston’s lecture notes revolution-

ized the study of Kleinian groups and hyperbolic manifolds, and formed the

foundation for parts of Thurston’s proof of his Geometrization theorem. At the

time, much of the material in those Notes was unavailable in a published form.

In this foreword, we point the reader to some more recent publications where

detailed explanations of the material in Thurston’s original lecture notes are

available. We will place a special emphasis on Thurston’s Chapters 8 and 9.

This material was the basis for much of our original article and it still repre-

sents the part least well-digested by the mathematical community. This is also

the material which has been closest to the author’s subsequent interests, so the

selection will, by necessity, reflect some of his personal biases.

We hope this foreword will be useful to students and working mathematicians

who are attempting to come to grips with the very beautiful, but also sparingly

described, mathematics in Thurston’s notes. No attempt has been made to make

this foreword self-contained. It is simply a rough-and-ready guide to some of

the relevant literature. In particular, we will not have space to define all the

mathematical terms used, but we hope the reader will make use of the many

references to sort these out. In particular, we will assume that the reader has

a copy of Thurston’s notes on hand. We would also like to suggest that it

would be valuable for a publisher to make available Thurston’s lecture notes,

in their original form. The author would like to apologize, in advance, to the

mathematicians whose relevant articles have been omitted due to the author’s

ignorance.

∗ partially supported by grants from the National Science Foundation
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4 A new foreword

In a final section, we describe some recent progress on the issues dealt with

in Chapters 8 and 9 of Thurston’s notes.

We would like to thank Francis Bonahon, Al Marden and Yair Minsky for

their helpful comments on earlier versions of this foreword.

1. General references

Before focusing in a more detailed manner on the material in Chapters 8 and 9,

we will discuss some of the more general references which have appeared since

the publication of our article. In order to conserve space, we will be especially

telegraphic in this section.

Thurston [153] recently published volume I of a new version of his lecture

notes under the title Three-dimensional Geometry and Topology. This new vol-

ume contains much of the material in Chapter 1, 2, and 3 of the original book,

as well as material which comes from Sections 5.3 and 5.10. However, the most

exciting and novel portions of his original notes have been left for future vol-

umes. A number of other books on Kleinian groups and hyperbolic manifolds

have been published in the last 15 years, including books by Apanasov [14],

Benedetti and Petronio [23], Buser [50], Kapovich [83], Katok [84], Maskit

[104], Matsuzaki and Taniguchi [105], Ohshika [128] and Ratcliffe [137].

There are now several complete published proofs of Thurston’s Geometriza-

tion Theorem for Haken 3-manifolds available. McMullen [107] used his proof

of Kra’s Theta Conjecture to outline a proof of the Geometrization Theorem

for Haken 3-manifolds that do not fiber over the circle. A more complete ver-

sion of this approach is given by Otal [132], who also incorporates work of

Barrett and Diller [15]. Kapovich [83] has recently published a book on the

proof of the Geometrization Theorem. His approach to the main portion of the

proof is based on work of Rips (see [21]) on the actions of groups on R-trees.

(Morgan and Shalen [120, 121, 122] first used the theory of R-trees to prove

key portions of the Geometrization Theorem. See Bestvina [20] or Paulin [133]

for a more geometric viewpoint on how actions of groups on R-trees arise as

limits of divergent sequences of discrete faithful representations.) An outline of

Thurston’s original proof of the main portion of the Geometrization Theorem

was given by Morgan in [119]. Portions of this proof are available in Thurston’s

article [152] and preprint [155]. Thurston’s original proof develops much more

structural theory of Kleinian groups than the later proofs.

Otal [131] also published a proof of the Geometrization Theorem in the

case where the 3-manifold fibers over the circle. Otal’s proof makes use of the

theory of R-trees, and in particular uses a deep theorem of Skora [144] which
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1. General references 5

characterizes certain types of actions of surface groups on R-trees. (Kleineidam

and Souto [90] used some of Otal’s techniques to prove a spectacular generaliza-

tion of Thurston’s Double Limit Theorem to the setting of hyperbolic structures

on compression bodies.) Thurston’s original proof of the Geometrization The-

orem for 3-manifolds which fibre over the circle is available at [154]. (A survey

of this proof is given by Sullivan [146]; see also McMullen [108].)

We will now briefly indicate where one might look for details on some of

the material in Thurston’s notes which is not in Chapters 8 and 9. The material

in Sections 4.1–4.7 of Thurston’s notes is discussed in Chapter E of Benedetti–

Petronio [23]. The material in Sections 4.8 and 4.9 was further developed by

Epstein in [65]. The results in Sections 4.10 and 4.11 were generalized in

Floyd–Hatcher [73] and Hatcher–Thurston [76].

The material in Section 5.1 is the subject matter of Sections 1.5–1.7 of

[57]. In Sections 5.2, 5.5 and 5.6, Thurston develops a useful estimate for the

dimension of the representation variety, which was proven carefully by Culler

and Shalen in Section 3 of [62]. Thurston’s Hyperbolic Dehn Surgery theorem

is established in Section 5.8, using the dimension count established in the

previous sections and the theory developed in Section 5.1. This version of the

proof is discussed in Hodgson–Kerckhoff [77] and, in more detail, in Bromberg

[46]. Bromberg also develops generalizations of Thurston’s Hyperbolic Dehn

Surgery theorem to the infinite volume setting, see also Bonahon–Otal [31]

and Comar [61]. A complete proof of the Hyperbolic Dehn Surgery theorem

using ideal triangulations is given by Petronio and Porti [135]. The proof of the

Mostow–Prasad rigidity theorem given in Section 5.9 follows the same outline

as Mostow’s original proof [123], see also Marden [98], Mostow [124] and

Prasad [136]. In Sections 5.11 and 5.12, Thurston proves Jørgensen’s theorem

that given a bound C, there exists a finite collection of manifolds, such that

every hyperbolic 3-manifold of volume at most C is obtained from one of the

manifolds in the collection by Dehn Filling; see also Chapter E in [23].

In Sections 6.1–6.5, Thurston gives Gromov’s proof of the Mostow–Prasad

rigidity theorem and develops Gromov’s theory of simplicial volume; see

Gromov [74] and Chapter C of Benedetti and Petronio [23]. In Section 6.6,

Thurston proves that the set of volumes of hyperbolic 3-manifolds is well-

ordered, again see Chapter E of Benedetti and Petronio [23]. Dunbar and

Meyerhoff [64] generalized Thurston’s arguments to show that the set of

volumes of hyperbolic 3-orbifolds is well-ordered.

Chapter 7 of the original notes, concerning volumes of hyperbolic manifolds,

was written by John Milnor and much of the work in this chapter appears

in appendices to [110] and [111]. Portions of the material in the incomplete

Chapter 11 appear in Appendix B of McMullen [108]. Chapter 13 begins with
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6 A new foreword

the theory of orbifolds, see for example Scott [142] and Kapovich [83]. Scott

[142] also discusses the orbifold viewpoint on Seifert fibered spaces and the

geometrization of Seifert fibered spaces. The remainder of Chapter 13 concerns

Andreev’s theorem and its generalizations. Andreev’s original work appeared

in [11] and [12]. Andreev’s theorem has been generalized by Rivin–Hodgson

[138] and Rivin [139].

2. Chapter 8 of Thurston’s notes

Sections 8.1 and 8.2 largely deal with basic properties of the domain of discon-

tinuity and the limit set of a Kleinian group. Variations on this material can be

found in any text on Kleinian groups, for example [104] or [105].

2.1. Geometrically finite hyperbolic 3-manifolds

In Section 8.3, Thurston offers a new viewpoint on two of the main results in

Marden’s seminal paper “The geometry of finitely generated Kleinian groups.”

Marden’s Stability theorem (Proposition 9.1 in [98]) asserts that any small

deformation of a convex cocompact Kleinian group is itself convex cocompact

and is quasiconformally conjugate to the original group. Thurston’s version of

this theorem (Proposition 8.3.3 in his notes) appears as Proposition 2.5.1 in

our article [57]. Marden’s Stability theorem also includes a relative version of

this result, which asserts that any small deformation of a geometrically finite

Kleinian groups that preserves parabolicity, is itself geometrically finite and is

quasiconformally conjugate to the original manifold.

Marden’s Isomorphism Theorem (Theorem 8.1 in [98]) asserts that

any homotopy equivalence between two geometrically finite hyperbolic

3-manifolds which extends to a homeomorphism of their conformal boundaries,

is homotopic to a homeomorphism which lifts (and extends) to a quasiconfor-

mal homeomorphism of H3 ∪ S2
∞. Thurston’s Proposition 8.3.4 is a variation

on Marden’s Isomorphism theorem.

Proposition 8.3.4: Let N1 = Hn/Ŵ1 and N2 = Hn/Ŵ2 be two convex cocom-

pact hyperbolic n-manifolds and let M1 and M2 be strictly convex submanifolds

of N1 and N2. If φ: M1 → M2 is a homotopy equivalence which is a homeomor-

phism from ∂M1 to ∂M2, then there exists a map f : Hn ∪ Sn−1
∞ → Hn ∪ Sn−1

∞

such that the restriction f̂ of f to Sn−1
∞ is quasiconformal, f̂ Ŵ1 f̂

−1
= Ŵ2, and the

restriction of f to Hn is a quasi-isometry.

In Section 8.4, Thurston continues his study of geometrically finite hyper-

bolic 3-manifolds. Theorem 8.4.2 is Ahlfors’ result, see [3], that the limit set
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2. Chapter 8 of Thurston’s notes 7

�(Ŵ) of a geometrically finite hyperbolic manifold N = Hn/Ŵ either has mea-

sure zero or is all of the sphere at infinity Sn−1
∞ and Ŵ acts ergodically on Sn−1

∞ .

Ahlfors’ Measure Conjecture asserts that this is the case for all finitely gen-

erated Kleinian groups. In Section 8.12, Thurston proves Ahlfors’ conjecture

for freely indecomposable geometrically tame Kleinian groups. Proposition

8.4.3 discusses three equivalent definitions of geometric finiteness. The various

definitions of geometric finiteness are treated thoroughly by Bowditch [33].

2.2. Measured laminations and the boundary of the convex core

In Section 8.5, Thurston introduces geodesic laminations and observes that the

intrinsic metric on the boundary of the convex core is hyperbolic. This result is

established in Chapter 1 of Epstein–Marden [66] and by Rourke [140]. Later,

Thurston will observe that the boundary of the convex core is an uncrumpled

surface. Uncrumpled surfaces are now known as pleated surfaces. Geodesic

laminations are treated in Chapter 4 of our article [57] and in Chapter 4 of

Casson-Bleiler [60].

In Section 8.6, Thurston introduces transverse measures on geodesic lami-

nations. In particular, he develops the bending measure on the bending locus of

the boundary of the convex core. The bending measure is discussed in Section

1.11 of Epstein–Marden [66]. Measured laminations are discussed by Hatcher

[75] and Penner–Harer [134]. The parallel theory of measured foliations is

developed in great detail in the book by Fathi, Laudenbach and Poenaru [70].

The connection between measured laminations and measured foliations is made

explicit by Levitt [97]. Hubbard and Masur [80] showed that measured folia-

tions can themselves be naturally linked to the theory of quadratic differentials,

see also Marden–Strebel [101]. One of the most spectacular applications of

the theory of measured laminations was Kerckhoff’s proof [87] of the Neilsen

Realization Theorem.

Bonahon developed the theory of geodesic currents, which are a generaliza-

tion of measured laminations, in [25] and [26]. This theory provides a beautiful

and flexible conceptual framework for the theory of measured laminations and

was put to central use in Bonahon’s proof [25] that finitely generated, freely

indecomposable Kleinian groups are geometrically tame. Bonahon [26] also

used geodesic currents to give a beautiful treatment of Thurston’s compactifica-

tion of Teichmüller space. Bonahon is currently preparing a research monograph

[29] which covers geodesic laminations, measured laminations, train tracks and

geodesic currents. It also describes Bonahon’s more recent work on transverse

cocycles and transverse Hölder distributions for geodesic laminations which

provide powerful new tools for the study of deformation spaces of hyperbolic
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8 A new foreword

manifolds. As one application of these techniques Bonahon [27] has computed

the derivative of the function with domain a deformation space of geometrically

finite hyperbolic 3-manifolds given by considering the volumes of the convex

cores. His formula is a generalization of Schläfli’s formula for the variation of

volumes of hyperbolic polyhedra. Bonahon’s briefer survey paper [28] covers

some of the same material; both the research monograph and the survey paper

are highly recommended.

2.3. Quasifuchsian groups and bending

In Section 8.7, Thurston begins his study of quasifuchsian groups. A finitely

generated, torsion-free Kleinian group is said to quasifuchsian if its limit set is

a Jordan curve and both components of its domain of discontinuity are invariant

under the entire group. Thurston’s definition of a quasifuchsian group is incom-

plete as it leaves out the condition on the domain of discontinuity. His definition

allows Kleinian groups which uniformize twisted I-bundles over surfaces, as

well as those which uniformize product I-bundles. Proposition 8.7.2 offers sev-

eral equivalent definitions of quasifuchsian groups. We give a corrected version

of Thurston Proposition 8.7.2 below:

Proposition 8.7.2. (Maskit [102]) If Ŵ is a finitely generated, torsion-free

Kleinian group, then the following conditions are equivalent:

(1) Ŵis quasifuchsian.

(2) The domain of discontinuity �(Ŵ) of Ŵ has exactly two components,

each of which is invariant under the entire group.

(3) Ŵ is quasiconformally conjugate to a Fuchsian group, i.e. there exists

a Fuchsian group � ⊂ PSL2(R) (such that its limit set �(�) = R ∪ ∞)

and a quasiconformal map φ: Ĉ → Ĉ such that Ŵ = φ�φ−1.

This characterization is originally due to Maskit, see Theorem 2 in [102],

although Thurston follows the alternative proof given by Marden in Section 3

of [98].

Example 8.7.3 is the famous Mickey Mouse example, which is produced

using the bending construction. Bending has been studied extensively by

Apanasov [14] and Tetenov [13], Johnson and Millson [81], Kourouniotis

[91] and others. Universal bounds on the bending lamination of a quasifuch-

sian group and hence on the bending deformation, are obtained by Bridgeman

[34, 35] (and generalized to other settings by Bridgeman–Canary [37]). These

bounds are discussed in more detail in the addendum to Epstein–Marden [66]

in this volume.
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2. Chapter 8 of Thurston’s notes 9

After the Mickey Mouse example, Thurston discusses simplicial hyperbolic

surfaces, although he does not give them a name. A simplicial hyperbolic sur-

face is a map, not necessarily an embedding, of a triangulated surface into a

3-manifold such that each face is mapped totally geodesically and the total angle

around each vertex is at least 2π. The restriction on the vertices guarantees that

the induced metric, usually singular, on the surface has curvature ≤ –1 in

the sense of Alexandrov. Simplicial hyperbolic surfaces were used extensively

by Bonahon [25] in his proof that freely indecomposable Kleinian groups are

geometrically tame and they are discussed in detail in Section 1.3 of [25].

Proposition 8.7.7 asserts that every complete geodesic lamination is realiz-

able in a quasifuchsian hyperbolic 3-manifold. This statement is included in

Theorem 5.3.11 in [57]. We will discuss realizability of laminations more fully

when we come to Sections 8.10 and 9.7.

2.4. Pleated surfaces and realizability of laminations

Section 8.8 of Thurston’s notes concerns pleated surfaces, which are called

uncrumpled surfaces in the notes. The results in this section form the basis of

Section 5 of our original article [57]. Pleated surfaces are also discussed in

Thurston’s articles on the Geometrization theorem [152, 154, 155].

Section 8.9 of Thurston’s notes develops the theory of train tracks. Proposi-

tion 8.9.2 and Corollary 8.9.3 assert that any geodesic lamination on a surface

may be well-approximated by a train track. Three-dimensional versions of these

results play a key role in Bonahon’s work and Section 5 of his paper [25] dis-

cusses train track approximations to geodesic laminations in great detail. The

general theory of train tracks is developed by Penner and Harer in [134].

In Section 8.10, Thurston turns to the issue of realizability of laminations

in 3-manifolds. We discuss this issue in detail in Section 5.3 of [57]. One

begins with an incompressible, type-preserving map f : S → N of a finite area

hyperbolic surface S into a hyperbolic 3-manifold N . (An incompressible map f :

S → N is said to be type-preserving if f∗(g) is parabolic if and only if g ∈ π1(S) is

parabolic where f∗: π1(S) → π1(N) is regarded as a map between the associated

groups of covering transformations.) One says that a geodesic lamination λ on

S is realizable if there is a pleated surface h: S → N which maps λ into N

in a totally geodesic manner. If a realization exists then the image of λ is

unique (Proposition 8.10.2 in Thurston and Lemma 5.3.5 in [57].) The map

from the space of pleated surfaces (which are homotopic to f ) into the space

of geodesic laminations (with the Thurston topology) given by taking a pleated

surface to its pleating locus is continuous (Proposition 8.10.4 in Thurston and

Lemma 5.3.2 in [57].) Propositions 8.10.5, 8.10.6 and 8.10.7 develop more
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10 A new foreword

basic properties of geodesic measured laminations, see the earlier references for

details. Theorem 8.10.8 in Thurston’s notes asserts that the set Rf of realizable

laminations is open and dense in the set GL(S) of all geodesic laminations on

S, see Theorem 5.3.10 in [57] for details. Thurston’s Corollary 8.10.9, which

asserts that if N is geometrically finite then Rf = GL(S) unless N virtually fibres

over the circle with fibre f (S), is stated as Corollary 5.3.12 in [57]. We note that

Thurston’s Conjecture 8.10.10, which asserts that f∗(π1(S)) is quasifuchsian

if and only if Rf = GL(S), is a consequence of Bonahon’s work [25], see the

discussion after Proposition 9.7.1 and the discussion of Bonahon’s work in

Section 4.

In related work, Brock [38] proved that the length function is continuous on

the space of realizable laminations in AH(S) × ML(S) and extends to a contin-

uous function on all of AH(S) × ML(S). Thurston claimed this result and used

it in his proof [154] of the Geometrization theorem for 3-manifolds which fiber

over the circle.

2.5. Relative compact cores and ends of hyperbolic 3-manifolds

It will be convenient to formalize the material in Section 8.11 in the language

of relative compact cores. If N is a hyperbolic 3-manifold, and we choose ε

less than the Margulis constant (see Section 4.5 of Thurston [153] or Chap-

ter D in Benedetti–Petronio [23] for example) we can define the ε-thin part

of N to be the portion of N with injectivity radius at most ε. Each compact

part of the ε-thin part will be a solid torus neighborhood of a geodesic, while

each non-compact component will be the quotient of a horoball by a group

of parabolic isometries (isomorphic to either Z or Z ⊕ Z). We obtain N0 from

N by removing its “cusps”, i.e. the non-compact components of its thin part.

A relative compact core M for N is a compact 3-dimensional submanifold of

N0 whose inclusion into N is a homotopy equivalence which intersects each

toroidal component of ∂N0 in the entire torus and intersects each annular com-

ponent of ∂N0 in a single incompressible annulus. Bonahon [24], McCullough

[106] and Kulkarni–Shalen [93] proved that every hyperbolic 3-manifold with

finitely generated fundamental group admits a relative compact core.

Feighn–McCullough [71] and Kulkarni–Shalen [93] (see also Abikoff [1])

have used the relative compact core to give topological proofs of Bers’ area

inequality, which asserts that the area of the conformal boundary is bounded

by the number of generators (see Bers [16]) and Sullivan’s Finiteness Theo-

rem, which asserts that the number of conjugacy classes of maximal parabolic

subgroups of a Kleinian group is bounded by the number of generators (see

Sullivan [148]). See Section 7 of Marden [98] for a similar treatment of Bers’

www.cambridge.org/9780521615587
www.cambridge.org


Cambridge University Press
978-0-521-61558-7 — Fundamentals of Hyperbolic Manifolds
Edited by R. D. Canary , A. Marden , D. B. A. Epstein 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2. Chapter 8 of Thurston’s notes 11

area inequalities in the setting of geometrically finite groups where Marden

constructs an analogue of the relative compact core.

Much of the remainder of Sections 8 and 9 are taken up with understanding

the geometry and topology of ends of hyperbolic 3-manifolds. Ends of N0 are in

a one-to-one correspondence with components of ∂M–∂N0, see Proposition 1.3

in [25], where M is a relative compact core for N . An end of N0 is geometrically

finite if it has a neighborhood which does not intersect the convex core. At the

end of Section 8.11, Thurston introduces the crucial notion of a simply degener-

ate end of a hyperbolic 3-manifold. If M is a relative compact core for N , then an

end E of N0 which has a neighborhood bounded by an incompressible compo-

nent S of ∂M–∂N0 is said to be simply degenerate if there exists a sequence {γi}

of non-trivial simple closed curves on S whose geodesic representatives in N all

lie in the component of N0–M bounded by S and leave every compact subset of

N . (Here we have given Bonahon’s version of Thurston’s definition, which is

equivalent to Thurston’s.) A hyperbolic 3-manifold in which each component

of ∂M–∂N0 is incompressible is said to be geometrically tame if each of its

ends is either geometrically finite or simply degenerate.

We will say that the relative compact core M has relatively incompress-

ible boundary if each component of M–∂N0 is incompressible. Thurston works

almost entirely in the setting of hyperbolic 3-manifolds whose relative compact

core has relatively incompressible boundary. If N has no cusps, the relative

compact core has incompressible boundary if and only if π1(N) is freely inde-

composable. In general, the relative compact core has relatively incompressible

boundary if and only if there does not exist a non-trivial free decomposition of

π1(N) such that every parabolic element is conjugate into one of the factors,

see Proposition 1.2 in Bonahon or Lemma 5.2.1 in Canary-McCullough [58].

In Section 4.1, we will explain how the definition of geometric tameness

is extended to all hyperbolic 3-manifolds with finitely generated fundamen-

tal group.

2.6. Analytic consequences of tameness

In Section 8.12, Thurston proves a minimum principle for positive superhar-

monic functions on geometrically tame hyperbolic 3-manifolds.

Theorem 8.12.3: If N is a geometrically tame hyperbolic 3-manifold (whose

compact core has relatively incompressible boundary), then for every non-

constant positive superharmonic (i.e. 	h ≤ 0) function h on N,

infC(N)h = inf∂C(N)h
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