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Introduction

Global analysis has as its primary focus the interplay between the local analysis

and the global geometry and topology of a manifold. This is seen classically

in the Gauss–Bonnet theorem and its generalizations, which culminate in the

Atiyah–Singer Index Theorem [Atiyah and Singer 1968a]. This places con-

straints on the solutions of elliptic systems of partial differential equations in

terms of the Fredholm index of the associated elliptic operator and character-

istic differential forms which are related to global topological properties of the

manifold.

The Atiyah–Singer Index Theorem has been generalized in several directions,

notably by Atiyah and Singer themselves [1971] to an index theorem for fami-

lies. The typical setting here is given by a family of elliptic operators P D fPbg

on the total space of a fibre bundle F ! M ! B, where Pb is defined on
the Hilbert space L2.p�1.b/; dvol.F //. In this case there is an abstract index

class ind.P / 2 K0.B/. Once the problem is properly formulated it turns out

that no further deep analytic information is needed in order to identify the class.

These theorems and their equivariant counterparts have been enormously useful

in topology, geometry, physics, and in representation theory.

A smooth manifold M n with an integrable p-dimensional subbundle F of

its tangent bundle TM may be partitioned into p-dimensional manifolds called

leaves such that the restriction of F to the leaf is just the tangent bundle of

the leaf. This structure is called a foliation of M . Locally a foliation has the

form �
p � N , with leaves of the form �

p � fng. Locally, then, a foliation is a

fibre bundle. However the same leaf may pass through a given coordinate patch
infinitely often. So globally the situation is much more complicated.

Foliations arise in the study of flows and dynamics, in group representations,
automorphic forms, groups acting on spaces (continuously or even measurably),

and in situations not easily modeled in classical algebraic topology. For instance,

a diffeomorphism acting ergodically on a manifoldM yields a one-dimensional

foliation on M �� � with almost all leaves dense. The space of leaves of a

foliation in these cases is not decent topologically (every point is dense in the

example above) or even measure-theoretically (the space may not be a standard
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2 INTRODUCTION

Borel space). Foliations carry interesting differential operators, such as signa-

ture operators along the leaves. Following the Atiyah–Singer pattern, one might

hope that there would be an analytic index class of the type

indfP g D Average ind.Px/:

There are two difficulties. First of all, leaves of compact foliations need not be
compact, so an elliptic operator on a leaf may well have infinite-dimensional
kernel or cokernel, and thus “ind.Px/” makes no sense. This problem aside, the

fact that the space of leaves may not be even a standard Borel space suggests

strongly that there is no way to average over it. There was thus no analytic index

to try to compute for foliations.

Alain Connes saw his way through these difficulties. He realized that the
“space of leaves” of a foliation should be a noncommutative space— that is,

a C
�-algebra C

�

r .G.M //. In the case of a foliated fibre bundle this algebra is
stably isomorphic to the algebra of continuous functions on the base space. This

suggests K0.C �

r .G.M /// as a home for an abstract index ind.P / for tangen-

tially elliptic operators.

Next Connes realized that in the fibre bundle case there is an invariant trans-
verse measure � which corresponds to the volume measure on B. So we must

assume given some invariant transverse measure in general. These may not exist.

If one exists it may not be unique up to scale. An invariant transverse measure

� gives rise to a trace �� on C
�

r .G.M // and thus a real number

ind�.P / D ��.ind.P // 2 �

which Connes declared to be the analytic index. Actually we are cheating here;
the most basic definition of the analytic index is in terms of locally traceable
operators as we shall explain below and in Chapters I and IV. With an analytic
index to compute, Connes computed it.

Connes Index Theorem. Let M be a compact smooth manifold with an ori-

ented foliation and let � be an invariant transverse measure with associated

Ruelle–Sullivan current C� . Let P be a tangentially elliptic pseudodifferential

operator. Then

ind�.P / D
˝

ch.P /Td.M /; ŒC� �
˛

:

Connes’ theorem is very satisfying. Its proof involves a tour of many areas

of modern mathematics. We decided to write an exposition of this theorem
and to use it as a centerpiece to discuss this region of mathematics. Along the

way we realized that the setting of foliated spaces (local picture �
p � N with

N not necessarily Euclidean) was at once simpler pedagogically and yielded a

somewhat more general theorem, since foliated spaces which are not manifolds

occur with some frequency.

Definition.

www.cambridge.org/9780521613057
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-61305-7 — Global Analysis on Foliated Spaces
2nd Edition
Calvin C. Moore , Claude L. Schochet
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

There are two difficulties. First of all, leaves of compact fo
compact, so an elliptic operator on a leaf may well have infini

Alain Connes saw his way through these difficulties. He reali

. In the case of a foliated fibre bundle this algebra is

Next Connes realized that in the fibre bundle case there is an i

. Actually we are cheating here;
the most basic definition of the analytic index is in terms of l
operators as we shall explain below and in Chapters I and IV. W

of modern mathematics. We decided to write an exposition of t
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The local picture of a foliated space is a topological space of the form L�N ,

where L is a copy of �
p and N is a separable metric space, not necessarily a

manifold.

n
A tangentially smooth function

f W L � N ! �

is a continuous function with the following properties:

(1) For each n 2 N , the function f . � ; n/ W L ! � is smooth.

(2) All partial derivatives of f in the L directions are continuous on L�N .

This notion extends naturally to tangentially smooth functions

f W L1 � N1 ! L2 � N2:

Definition. A foliated space X of dimension p is a separable metrizable space

equipped with a regular foliated atlas � D f.U˛; '˛/g such that, whenever U˛

and Uˇ intersect, the composition

'˛.U˛ \ Uˇ/
'�1

˛
�! U˛ \ Uˇ

'ˇ

�! 'ˇ.U˛ \ Uˇ/

is tangentially smooth. A tangentially smooth function f W X1 ! X2 of foliated

spaces is a continuous function such that if Ui � Xi are foliated charts with

associated maps

'i W Ui �! Li � Ni

then the composition

'1.U1 \ f �1.U2//
'�1

1

�! U1 \ f �1.U2/
f

�! f .U1/ \ U2

'2

! L2 � N2

is tangentially smooth.

This guarantees that the leaves in each coordinate patch coalesce to form

leaves ` in X which are smooth p-manifolds, and that there is a natural vector

bundle FX ! X of dimension p which restricts to the tangent bundle of each

leaf.

Any foliated manifold is a foliated space. There are interesting examples of

foliated spaces which are not foliated manifolds. For instance, a solenoid is a

foliated space with leaves of dimension 1 and with Ni homeomorphic to Cantor

sets. If M n is a manifold which is foliated by leaves of dimension p and if N

is a transversal of M n then any subset of N determines a foliated subspace of

M simply by taking those leaves of M n which meet the subset. This includes

the laminations of much current interest in low-dimensional topology, and it

includes the topological spaces that arise in the study of quasicrystals and tilings
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4 INTRODUCTION

of Euclidean space. Finally, X may well be infinite-dimensional: take
Q

1

1
S1

foliated by lines corresponding to algebraically independent irrational rotations.

Then f1g �
Q

1

2
S1 is transversal!1

IfE
�

! X is a foliated bundle (i.e.,E is also foliated, � takes leaves to leaves,

and � is tangentially smooth) then �� .E/ � �� .X; E/ denotes continuous tan-

gentially smooth sections of E. We let

˝k
�

.X / D �� .�kF�/

and define the tangential cohomology groups of a foliated space by

H k
�

.X / D H k.˝�

�
.X //;

where d W ˝k
�

.X / ! ˝kC1
�

.X / is the analogue of the de Rham differential

obtained by differentiating in the leaf directions. Similar (but not the same)

groups have been studied by many authors. Tangential cohomology groups are

based upon forms which are continuous transversely (even if X is a foliated

manifold.) It turns out that this small point has some major consequences. The

groups may be described as

H k
�

.X / D H k.X W �� /;

where �� is the sheaf of germs of continuous functions which are constant

along leaves. The tangential cohomology groups are functors from foliated

spaces and leaf-preserving tangentially smooth maps to graded commutative

�-algebras. They vanish for k > p. There is the usual apparatus of long exact

sequences, suspension isomorphisms, and a Thom isomorphism for oriented k-

plane bundles.

The groups H �
�

.X / have a natural topology and are not necessarily Haus-

dorff; we let
H k

�
.X / D H k

�
.X /=f0g

denote the maximal Hausdorff quotient. For example, if X is the torus S1 �S1

foliated by an irrational flow, H 1
�

.X / has infinite dimension but H 1
�
.X / Š �.

The parallel between de Rham theory and tangential cohomology theory extends

to the existence of characteristic classes. Given a tangentially smooth vector

bundleE ! X we construct tangential connections, curvature forms, and Chern

classes.

Next we recall the construction of the groupoid of a foliated space; the idea is
due to Ehresmann, Thom and Reeb and was elaborated upon by Winkelnkemper.
A foliated space X has a natural equivalence relation: x � y if and only if x

1This paragraph appeared in the first edition. Since then there has been an explosion of interest
in laminations. (Nowadays some authors use the word lamination as a synonym for foliated

space.) The books [Candel and Conlon 2000; 2003] contain a host of examples and references.

is designed to by-pass this difficulty. It contains holonomy
; holonomy is essential for diffeomorphism and structural q

We turn next to a study of differential and pseudodifferenti

. These spaces may well be infinite-dimensional,

-modules. We shall show that these spaces are
finite-dimensional in a sense that we now describe.

. We define a measure
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and y are on the same leaf. The resulting space �.X / � X � X is not a well-

behaved topological space. The holonomy groupoid G.X / of a foliated space

is designed to by-pass this difficulty. It contains holonomy data not given by
�.X /; holonomy is essential for diffeomorphism and structural questions about
the foliated space. The holonomy groupoid G.X / consists of triples .x; y; Œ˛�/,

where x and y lie on the same leaf ` of X , ˛ is a path from x to y in `, and Œ˛�

denotes the holonomy class of the path ˛. The map G.X / ! �.X / is simply

.x; y; Œ˛�/ ! .x; y/. The preimages of .x; y/ correspond to holonomy classes

of maps from x to y. The space G.X / is a (possibly non-Hausdorff) foliated

space. If N is a complete transversal (meaning that N is Borel and for each

leaf ` the intersection N \ ` is nonempty and at most countable), GN

N
is the

subgroupoid of G.X / consisting of triples .x; y; Œ˛�/ with x; y 2 N . In a sense

which we make precise, GN

N
is a good discrete model for G.X /.

We turn next to a study of differential and pseudodifferential operators on X .

Suppose that E0 and E1 are foliated bundles over X and

D W �� .E0/ ! �� .E1/:

The operator D is said to be tangential if D restricts to

D` W � .E0 j`/ ! � .E1 j`/

for each `, and D is tangentially elliptic if each operator D` is an elliptic oper-

ator. If D is a tangential, tangentially elliptic operator then KerD` and KerD
�

`
consist of smooth functions on l . These spaces may well be infinite-dimensional,
and hence expressions such as

dim KerD` � dim KerD�

`

make no sense. However there is some additional structure at our disposal, for

KerD` and KerD
�

`
are C 1.`/-modules. We shall show that these spaces are

for each ` locally finite-dimensional in a sense that we now describe.
Let Y be a locally compact space endowed with a measure (in the application

to index theory Y D` is a leaf and the measure is a volumemeasure) and suppose

that T is a positive operator on L2.Y; E/ for some bundle E over Y . Then

Trace.f 1=2Tf 1=2/ D Trace.T 1=2f T 1=2/

for every bounded positive function f . We define a measure �T by

Trace.f 1=2TF1=2/ D

Z
Y

f d�T

and declare T to be locally traceable with local trace �T if, for some family

fYig of compact sets with union Y , we have

�T .Yi/ < 1:
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6 INTRODUCTION

If

T D
X

�iTi

with each Ti locally traceable, T is locally traceable with local trace �T DP
�i�Ti

. We identify a closed subspace V � L
2.Y; E/ with the orthogonal

projection onto it and say that the subspace is locally finite-dimensional if the

projection is locally traceable. Any closed subspace of L
2.Y; E/ that consists

entirely of continuous functions is easily seen to be locally finite-dimensional.
If Y is a C

1 manifold and D is an elliptic pseudodifferential operator on

Y then DD
� and D

�
D are locally traceable so KerD and KerD� are locally

finite-dimensional. The local index of D is defined to be

�D D �KerD � �KerD� :

If Y is a compact manifold then
R

Y
�D D ind.D/, the classical Fredholm index.

The notion of locally traceable operator makes it possible to discuss the index

of an elliptic operator on a noncompact manifold. As we observed previously,

ifD is a tangential, tangentially elliptic operator on a compact foliated space X

then D` is an elliptic operator on the leaf ` and its local index

�D`
D �KerD`

� �KerD�

`

does make sense as a (signed) Radon measure on `. Write �x
D

D �D`
for each x 2

`. Then �D D f�x
D

g is a tangential measure; that is, a family of Radon measures
supported on leaves of X with suitable invariance properties (see Definition
4.11). We regard �D as the abstract analytic index of D. If the foliation bundle

F is oriented then a tangential measure determines a class in H
p
� .X /. The task

of an index theorem is to identify that class.

To proceed further along these lines and as they are of substantial independent

interest, we introduce transverse measures. For this we move temporarily to a

measure-theoretic context. Suppose that .X; �/ is a standard Borel equivalence

relation. We assume that there is a complete Borel transversal; that is, a Borel set
which meets all equivalences classes and where the intersection with each class

is denumerable. This condition holds easily in the setting of foliated spaces.

Assume further that we are given a one-cocycle � 2 Z
1.�; �

�/. A transverse

measure of modulus � is a measure � on the � -ring of all Borel transversals

which is � -finite on each transversal and such that � jT is quasi-invariant with

modulus � jT for the countable equivalence relation � \ .T � T / for each

transversal T . If � � 1 then � is an invariant transverse measure. For example,

if X is the total space of a fibration ` ! X ! B foliated with fibres as leaves
then an invariant transverse measure on X is precisely a � -finite measure on B.

Recall that a tangential measure � is an assignment ` 7! �` of a measure to

each leaf (or class of �) which satisfies suitable Borel smoothness properties
(see Definition 4.11). For example, if D is a tangential, tangentially elliptic

fibring measure-theoretically over

We prove a Riesz representation theorem: this map is an isomo

theorem. We see also that

With this machinery in hand we can state and prove the remarka

defined by Connes. The Connes index theorem states that for

. (See Chapter V for definitions).
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operator on X then the local index �D is a tangential measure. If we choose

a coherent family of volume measures for each leaf ` then these coalesce to a

tangential measure.

Given a tangential measure � and an invariant transverse measure �, we de-

scribe an integration process that produces a measure � d� on X and a number
R

� d� obtained by taking the total mass of the measure. Choose a complete

transversal N . There is a Borel map � W X ! N with �.x/ � x. Regard X as

fibring measure-theoretically over N , and let �n be the restriction of �` to the set

��1.n/, which is contained in the leaf where n lies. Then
R

N
�n d�.n/ D � d�

is a measure on X . This integration process is related to the pairing of currents

with foliation cycles in [Sullivan 1976].

Howmany invariant transverse measures are there? LetMT .X / be the vector

space of Radon invariant transverse measures. The construction above provides

a pairing

MT .X / � ˝p
� .X / ! �

and hence a Ruelle–Sullivan map

MT .X / ! Homcont.H
p
� .X /; �/ Š H �

p .X /:

We prove a Riesz representation theorem: this map is an isomorphism. For ex-
ample, ifX is foliated by points thenH 0

� .X /DC.X / and an invariant transverse

measure is just a measure, so our result reduces to the usual Riesz representation

theorem. We see also that X has no invariant transverse measure if and only if

H
p
� .X / D 0.

With this machinery in hand we can state and prove the remarkable index
theorem of A. Connes. Let D be a tangential, tangentially elliptic pseudodif-

ferential operator on a compact oriented foliated space of leaf dimension p. As

described above, we obtain the analytic index of D as a tangential measure �D .

For any invariant transverse measure � the real number
R

X
�D d� is the analytic

�-index ind�.D/ defined by Connes. The Connes index theorem states that for
any invariant transverse measure �,

Z

�D d� D

Z

�
top

D
d�;

where

�
top

D
D ˙

�

˚�1
� ch� .D/

�

Td� .X /

is the topological index of the symbol of D. (See Chapter V for definitions).
Using the Riesz representation theorem we reformulate Connes’ theorem to read

Œ�D � D Œ�
top

D
� 2 H p

� .X /

which, as is evident, does not involve invariant transverse measures. Of course

if X has no invariant transverse measures then H
p
� .X / D 0 and �D 2 f0g.
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8 INTRODUCTION

There is a stronger form of the index theorem for foliated manifolds which

is due to Connes and Skandalis. To state it we need to introduce the reduced

C
�-algebra of the foliated space. The compactly supported tangentially smooth

functions on G.X / form a �-algebra under convolution. (If G.X / is not Haus-

dorff then a modification is required.) For each leaf G
x ofG.X / with its natural

volume measure there is a natural regular representation of this �-algebra on

�.L2.Gx//. Complete the �-algebra with respect to these representations and

one obtains C
�

r .G.X //. This algebra enters into index theory because there is

a natural pseudodifferential operator extension

0 ! C
�

r .G.X // �! N�
0 �

�! � .S�
F; End.E// ! 0

and hence the tangential principal symbol of D yields an element of

K0.C �

r .G.X ///:

Connes and Skandalis [Connes and Skandalis 1984] identify this element and

thereby obtain a sharper form of the index theorem which is useful in the Type III

situation. Even in the presence of an invariant transverse measure, if the symbol

of an operator D has finite order in K0.C �

r .X // then Œ�D � D 0 in H
p
� .X /.

We conclude this introduction with a brief summary of the contents of each
chapter.

I. Locally Traceable Operators

Given an operator T on L
2.Y; E/ for a locally compact space Y, we explain

the concept of local traceability and we construct the local trace �T of T . The

local index �D of an elliptic operator on a noncompact manifold is onemotivating

example. We also discuss several situations outside the realm of foliations where
locally traceable operators shed some light. In particular, we interpret the formal

degree of a representation of a unimodular locally compact group in these terms.

II. Foliated Spaces

Here we set forth the topological foundations of our study. We give many ex-
amples of foliated spaces and construct tangentially smooth partitions of unity.

Then follow smoothing results which enable us, for instance, to assume freely

that bundles over our spaces are tangentially smooth. It is perhaps worth noting

thatK0.X / coincides with the subgroup generated by tangentially smooth bun-

dles. Next we explain holonomy and, following Winkelnkemper, introduce the
holonomy groupoid of a foliated space. We consider the relationship between
G.X / and its discrete model G

N
N
and determine the structure of G

N
N
in several

examples.

In this chapter we define the tangential cohomology groups

with coefficients in the sheaf of germs of continuous functio

We develop the properties parallel to the expected properti

. We establish a Thom isomorphism theorem (3.30) of the type

the definition of tangential homology theory. In an appendix

We develop here the general theory of groupoids, both in the m

, of course. We introduce transverse measures

We carefully explain the integration process
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INTRODUCTION 9

III. Tangential Cohomology

In this chapter we define the tangential cohomology groups H �
�

.X / as the co-

homology of the de Rham complex �� .��F�/ and equivalently as the coho-

mology of X with coefficients in the sheaf of germs of continuous functions on
X which are constant along leaves. There is an analogous compactly supported

theoryH �
�c.X / and an analogous tangential vertical theoryH �

�v
.E/ on bundles.

We develop the properties parallel to the expected properties from de Rham

theory. There is a Mayer–Vietoris sequence (for open subsets) and a Künneth

isomorphism

H �

�
.X / ˝ H �.M /

Š

�! H �

�
.X � M /

provided that M is a manifold foliated as one leaf and X � M is foliated with

leaves ` � M . We establish a Thom isomorphism theorem (3.30) of the type

˚ W H k
�

.X /
Š

�! H nCk
�v

.E/

for an oriented tangentially smooth n-plane bundle E ! X . Finally we indicate

the definition of tangential homology theory. In an appendix we rephrase these
constructions in terms of Lie algebra cohomology.

IV. Transverse Measures

We develop here the general theory of groupoids, both in the measurable and
topological contexts, in order to give a proper home to transverse measures. The

prime examples areG.X / andGN
N

, of course. We introduce transverse measures
and their elementary properties. The proper integrands for transverse measures

are tangential measures, as we have previously explained in the foliation context.

We carefully explain the integration process

.�; �/ 7! � d� 7!

Z
� d�

and indicate the necessary boundedness results. Specializing to topological

groupoids and continuous Radon tangential measures, we recount the Ruelle–

Sullivan construction of the current C� 2 ˝�

p.X / associated to the transverse

measure �. The current is a cycle if and only if � is an invariant transverse

measure.

Next we relate the space of invariant transverse measures MT .X / on X

to invariant measures on a complete transversal N . Finally we establish the

Riesz representation theorem: if X is a compact oriented foliated space with

leaf dimension p then the Ruelle–Sullivan map

MT .X / �! Homcont.H
p
�

.X /; �/

www.cambridge.org/9780521613057
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-61305-7 — Global Analysis on Foliated Spaces
2nd Edition
Calvin C. Moore , Claude L. Schochet
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 INTRODUCTION

is an isomorphism. One useful consequence of this result is that a linear func-

tional F on MT .X / is representable as F.�/ D
R

! d� for some ! 2 H
p
� .X /

if and only if the functional is continuous in the weak topology on MT .X /.

V. Characteristic Classes

This chapter contains the Chern–Weil development of tangential characteris-
tic classes. This comes down to carefully generalizing the usual constructions

of connections, curvature, and their classes. This results in tangential Chern

classes c�

n 2 H 2n
�

.X /, tangential Pontryagin classes p�

n 2 H 4n
�

.X /, and a tan-

gential Euler class, as well as the now classical universal combinations of these.

We construct these classes at the level of forms, so that, for a fixed tangential
Riemannian connection, the topological index is a uniquely defined form. We
verify the necessary properties of the tangential Chern character and the tangen-

tial Todd genus which relates the K-theory and tangential cohomology Thom

isomorphisms.

VI. Operator Algebras

Each foliated space has an associated C �-algebra C �

r .G.X // introduced by

A. Connes. In this chapter we present its basic properties. Central to our treat-

ment is the Hilsum–Skandalis isomorphism

C �

r .G.X // Š C �

r .GN
N / ˝ �;

which shows that, at the level of C �-algebras, the foliated space “fibres” over a
complete transversal N . The C �-algebra C �

r .GN
N

/ is the C �-algebra of the

discrete model GN
N
of G.X /. An invariant transverse measure � induces a

trace �� on C �

r .G.X //, and one then may construct the von Neumann algebra

W �.G.X /; Q�/. The analogous splitting

W �.G.X /; Q�/ Š W �.GN
N ; Q�/ ˝ �.�/

at the von Neumann algebra level is expected, of course. In the ergodic setting

this corresponds to the usual decomposition of a II1 factor into the tensor prod-

uct of II1 and I1 factors. We conclude with a brief introduction to K-theory

and the construction of a partial Chern character c W K0.C �

r .G// ! H
p
� .X /.

VII. Pseudodifferential Operators

The usual theory of pseudodifferential operators takes place on a smooth mani-

fold. In this chapter we “parametrize” the theory to the setting of foliated spaces.

This involves constructing the pseudodifferential operator algebra and its clo-

sure, defining the tangential principal symbol, and showing that the analytic

We construct the pseudodifferential operator extension wh

We introduce the analytic and topological index at this poin

We show how the partial Chern character and the tangential Ch
; the Connes

and finite propagation techniques to demonstrate that is well-defined. We

have defined the analytic index
measures. We establish the Connes index theorem which asser

We reformulate this result, in light of the Riesz representa

Chapter VIII is devoted to the proof of the index theorem. We v

that this suffices.
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