
Chapter 0

Introduction

0.0 Universality of Hecke algebras

0.0.1 Real and imaginary

Before a systematic exposition, I will try to outline the connections of the
representation theory of Lie groups, Lie algebras, and Kac–Moody algebras
with the Hecke algebras and the Macdonald theory.

The development of mathematics may be illustrated by Figure 0.1.

Imaginary axis (conceptual mathematics)

Real axis (special functions, numbers)

Figure 0.1: Real and Imaginary

Mathematics is fast in the imaginary (conceptual) direction but, generally,
slow in the real direction (fundamental objects). Mainly I mean modern
mathematics, but it may be more universal. For instance, the ancient Greeks
created a highly conceptual axiomatic geometry with modest “real output.”
I do not think that the ratio �/� is much higher now.

1

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521609186 - Double Affine Hecke Algebras
Ivan Cherednik
Excerpt
More information

http://www.cambridge.org/0521609186
http://www.cambridge.org
http://www.cambridge.org


2 CHAPTER 0. INTRODUCTION

Let us try to project representation theory on the real axis. In Figure 0.2
we focus on Lie groups, Lie algebras, and Kac–Moody algebras, omitting the
arithmetic direction (adèles and automorphic forms). The theory of special
functions, arithmetic, and related combinatorics are the classical objectives
of representation theory.

1 Characters of KMSpherical functions

Im Representation theory of Lie groups, Lie algebras, and Kac-Moody algebras

2 [Vλ ⊗ Vµ : V ν] 4

Re

[Mλ : Lµ]
(irreps of dimC < ∞) (induced: irreps)

3
algebras

Figure 0.2: Representation Theory

Without going into detail and giving exact references, the following are
brief explanations.

(1) I mean the zonal spherical functions on K\G/K for maximal compact
K in a semisimple Lie group G. The modern theory was started by
Berezin, Gelfand, and others in the early 1950s and then developed
significantly by Harish-Chandra [HC]. Lie groups greatly helped to
make the classical theory multidimensional, although they did not prove
to be very useful for the hypergeometric function.

(2) The characters of Kac–Moody (KM) algebras are not far from the prod-
ucts of classical one-dimensional θ–functions and can be introduced
without representation theory (Looijenga, Kac, Saito). See [Lo]. How-
ever, it is a new and important class of special functions with various
applications. Representation theory explains some of their properties,
but not all.

(3) This arrow gives many combinatorial formulas. Decomposing tensor
products of finite dimensional representations of compact Lie groups
and related problems were the focus of representation theory in the
1970s and early 1980s. They are still important, but representation
theory moved toward infinite dimensional objects.

(4) Calculating the multiplicities of irreducible representations of Lie alge-
bras in the BGG–Verma modules or other induced representations be-
longs to conceptual mathematics. The Verma modules were designed
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0.0. UNIVERSALITY OF HECKE ALGEBRAS 3

as a technical tool for the Weyl character formula (which is “real”). It
took time to understand that these multiplicities are “real” too, with
strong analytic and modular aspects.

0.0.2 New vintage

Figure 0.3 is an update of Figure 0.2. We add the results which were obtained
in the 1980s and 1990s, inspired mainly by a breakthrough in mathematical
physics, although mathematicians had their own strong reasons to study ge-
neralized hypergeometric functions and modular representations.

Representation theoryIm

Spherical fns KM characters [Mλ : Lµ]

Re

2 3 4[Vλ ⊗ Vµ : Vν ]1

Conformal Modular
e1 e2 e3

e4VerlindeGeneralized
hypergeom.
functions

blocks algebras reps

Figure 0.3: New Vintage

(1̃) These functions will be the main subject of the first chapter. We will
study them in the differential and difference cases. The interpretation
and generalization of the hypergeometric functions via representation
theory was an important problem of the so-called Gelfand program and
remained unsolved for almost three decades.

(2̃) Actually, the conformal blocks belong to the (conceptual) imaginary axis
as well as their kin, the τ–function. However, they extend the hyperge-
ometric functions, theta functions, and Selberg’s integrals. They attach
the hypergeometric function to representation theory, but affine Hecke
algebras serve this purpose better.

(3̃) The Verlinde algebras were born from conformal field theory. They are
formed by integrable representations of Kac–Moody algebras of a given
level with “fusion” instead of tensoring. These algebras can be also

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521609186 - Double Affine Hecke Algebras
Ivan Cherednik
Excerpt
More information

http://www.cambridge.org/0521609186
http://www.cambridge.org
http://www.cambridge.org


4 CHAPTER 0. INTRODUCTION

defined using quantum groups at roots of unity and interpreted via
operator algebras.

(4̃) Whatever you may think about the “reality” of [Mλ : Lµ], these multi-
plicities are connected with the representations of Lie groups and Weyl
groups over finite fields (modular representations). Nothing can be more
real than finite fields!

0.0.3 Hecke algebras

The Hecke operators and later the Hecke algebras were introduced in the the-
ory of modular forms, actually in the theory of GL2 over the p–adic numbers.
In spite of their p–adic origin, they appeared to be directly connected with
the K–theory of the complex flag varieties [KL1] and, more recently, with the
Harish-Chandra theory. It suggests that finite and p–adic fields are of greater
fundamental importance for mathematics and physics than we think.

Concerning the great potential of p–adics, let me mention the following
three well-known confirmations:

(i) The Kubota–Leopold p–adic zeta function, which is a p–adic analytic
continuation of the values of the classical Riemann zeta function at negative
integers.
(ii) My theorem about “switching local invariants” based on the p–adic uni-
formization (Tate–Mumford) of the modular curves which come from the
quaternion algebras.
(iii) The theory of p–adic strings due to Witten, which is based on the sim-
ilarity of the Frobenius automorphism in arithmetic to the Dirac operator.

Observation. The real projection of representation theory goes through
Hecke-type algebras.

The arrows in Figure 0.4 are as follows.

(a) This arrow is the most recognized now. Quite a few aspects of the Harish-
Chandra theory in the zonal case were covered by representation theory
of the degenerate (graded) affine Hecke algebras, introduced in [Lus1]
([Dr1] for GLn). The radial parts of the invariant differential operators
on symmetric spaces, the hypergeometric functions and their general-
izations arise directly from these algebras [C10].

The difference theory appeared even more promising. It was demon-
strated in [C19] that the q–Fourier transform is self-dual like the classi-
cal Fourier and Hankel transforms, but not the Harish-Chandra trans-
form. There are connections with the quantum groups and quantum
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0.0. UNIVERSALITY OF HECKE ALGEBRAS 5
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Figure 0.4: Hecke Algebras

symmetric spaces (Noumi, Olshansky, and others; see [No1]). However,
the double Hecke algebra technique is simpler and more powerful.

(b) The conformal blocks are solutions of the KZ–Bernard equation (KZB).
The double Hecke algebras lead to certain elliptic generalizations of the
Macdonald polynomials [C17, C18, C23] (other approaches are in [EK1,
C17, FV3], and the recent [Ra]). These algebras govern the monodromy
of the KZB equation and “elliptic” Dunkl operators (Kirillov Jr., Felder–
Tarasov–Varchenko, and the author).

The monodromy map is the inverse of arrow (b̃). The simplest examples
are directly related to the Macdonald polynomials and those at roots of
unity.

(c) Hecke algebras and their affine generalizations give a new approach to
the classical combinatorics, including the characters of the compact
Lie groups. The natural setting here is the theory of the Macdonald
polynomials, although the analytic theory seems more challenging.

Concerning (c̃), the Macdonald polynomials at the roots of unity give
a simple approach to the Verlinde algebras [Ki1, C19, C20]. The use
of the nonsymmetric Macdonald polynomials here is an important de-
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6 CHAPTER 0. INTRODUCTION

velopment. Generally, these polynomials are beyond the Lie and Kac–
Moody theory, although they are connected with the Heisenberg–Weyl
and p–adic Hecke algebras.

(d) This arrow is the Kazhdan–Lusztig conjecture proved by Brylinski–Kashi-
wara and Beilinson–Bernstein and then generalized to the Kac–Moody
case by Kashiwara–Tanisaki.

By (d̃), I mean the modular Lusztig conjecture (partially) proved by
Anderson, Jantzen, and Soergel. There is recent significant progress
due to Bezrukavnikov.

The arrow from the Macdonald theory to modular representations is
marked by “ ?! .” It seems to be the most challenging now (there are
already first steps in this direction). It is equivalent to extending the
Verlinde algebras and their nonsymmetric variants from the alcove (the
restricted category of representations of Lusztig’s quantum group) to
the parallelogram (all representations).

If such an extension exists, it would give a k–extension of Lusztig’s
conjectures, formulas for the modular characters (not only those for the
multiplicities), a description of modular representations for arbitrary
Weyl groups, and more.

0.1 KZ and Kac–Moody algebras

In this section we comment on the role of the Kac–Moody algebras and their
relations (real and imaginary) to the spherical functions and the double Hecke
algebras.

0.1.1 Fusion procedure

I think that the penetration of double Hecke algebras into the fusion procedure
and related problems of the theory of Kac–Moody algebras is a convincing
demonstration of their potential. The fusion procedure was introduced for
the first time in [C3]. On the physics side, let me also mention a contribution
of Louise Dolan.

Given an integrable representation of the n–th power of a Kac–Moody
algebra and two sets of points on a Riemann surface (n points and m points),
I constructed an integrable representation of the m–th power of the same
Kac–Moody algebra. The construction does not change the “global” central
charge, the sum of the local central charges over the components. It was
named later “fusion procedure.”
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0.1. KZ AND KAC–MOODY ALGEBRAS 7

I missed that in the special case of this correspondence, when n = 2 and
m = 1, the multiplicities of irreducibles in the resulting representation are the
structural constants of a certain commutative algebra, the Verlinde algebra
[Ver].

Now we know that the Verlinde algebra and all its structures can be readily
extracted from the simplest representation of the double affine Hecke algebra
at roots of unity. Thus the Kac–Moody algebras are undoubtedly connected
with the double Hecke algebras.

Double Hecke algebras dramatically simplify and generalize the algebraic
theory of Verlinde algebras, including the inner product and the (projective)
action of PSL(2, Z), however, excluding the integrality and positivity of the
structural constants. The latter properties require k = 1 and are closely
connected with the Kac–Moody interpretation (although they can also be
checked directly).

I actually borrowed the fusion procedure from Y. Ihara’s papers “On con-
gruence monodromy problem.” A similar construction is a foundation of his
theory. I changed and added some things (the central charge has no counter-
part in his theory), but the procedure is basically the same. Can we go back
and define Verlinde algebras in adèles’ setting?

0.1.2 Symmetric spaces

The classification of Kac–Moody algebras very much resembles that of sym-
metric spaces. See [Ka], [He2]. It is not surprising, because the key technical
point in both theories is the description of the involutions and automorphisms
of finite order for the semisimple finite dimensional Lie algebras. The classifi-
cation lists are similar but do not coincide. For instance, the BCn–symmetric
spaces have no Kac–Moody counterparts. Conversely, the KM algebra of
type, say, D

(3)
4 is not associated (even formally) with any symmetric space.

Nevertheless one could hope that this parallelism is not incidental.

Some kind of correspondence can be established using the isomorphism of
the quantum many-body problem [Ca, Su, HO1], a direct generalization of the
Harish-Chandra theory, and the affine KZ equation. The isomorphism was
found by A. Matsuo and developed further in my papers. It holds when the
parameter k, given in terms of the root multiplicity in the context of symmet-
ric spaces, is an arbitrary complex number. In the Harish-Chandra theory, it
equals 1/2 for SL2(R)/SO2, 1 in the so-called group case SL2(C)/SU2, and
k = 2 for the Sp2. The k–generalized spherical functions are mainly due to
Heckman and Opdam; see Chapter 1.

Once k was made an arbitrary number, it could be expected a counterpart
of the central charge c, the level, in the theory of Kac–Moody algebras. In-
deed, it has some geometric meaning. However, generally, it is not connected
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8 CHAPTER 0. INTRODUCTION

with the central charge. Indeed, the number of independent k–parameters
can be from 1 (A,D, E) to 5 (C∨C, the so-called Koornwinder case), but we
have only one (global) central element c in the Kac–Moody theory. Also, the
k–spherical functions are eigenfunctions of differential operators generalizing
the radial parts of the invariant operators on symmetric spaces. These opera-
tors have no counterparts for the Kac–Moody characters. Also, the spherical
functions are orthogonal polynomials; the Kac–Moody charactes are not. In
addition, the latter are of elliptic type, the spherical functions are of trigono-
metric type.

We will discuss the elliptic quantum many-body problem (QMBP) in the
first chapter. It gives a kind of theory of spherical functions in the Kac–
Moody setting (at critical level). However, it supports the unification of c
and k rather than the correspondence between them.

The elliptic QMBP in the GLN–case was introduced by Olshanetsky and
Perelomov [OP]. The classical root systems were considered in the paper
[OOS]. The Olshanetsky–Perelomov operators for arbitrary root systems were
constructed in [C17].

We see that an exact match cannot be expected. However, a map from
the Kac–Moody algebras to spherical functions exists. It is for GLN only and
not exactly for the KM characters, but it does exist.

0.1.3 KZ and r–matrices

The KZ equation is the system of differential equations for the matrix ele-
ments (using physical terminology, the correlation functions) of the represen-
tations of the Kac–Moody algebras in the n–point case. The matrix elements
are simpler to deal with than the characters. For instance, they satisfy dif-
ferential equations with respect to the positions of the points.

The most general “integrable” case, is described by the so-called r–matrix
Kac–Moody algebras from [C1] and the corresponding r–matrix KZ equations
introduced in [C6].

It was observed in the latter paper that the classical Yang–Baxter equation
can be interpreted as the compatibility of the corresponding KZ system, which
dramatically enlarged the number of examples. An immediate application was
a new class of KZ equations with trigonometric and elliptic dependence on
the points.

It was demonstrated in [C6] that the abstract τ–function, also called the
coinvariant, is a generic solution of the r–matrix KZ with respect to the action
of the Sugawara (−1)–operators.

More generally, the r–matrices and the corresponding KZ equations at-
tached to arbitraryroot systems were defined in [C6]. For instance, the depen-
dence on the points is via the differences (the A–case) of the points and also
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0.1. KZ AND KAC–MOODY ALGEBRAS 9

via the sums for B, C, D. The BC–case is directly related to the so-called
reflection equations introduced in [C2].

The results due to Drinfeld–Kohno on the monodromy of the KZ equations
(see [Ko]) can be extended to the r–matrix equations. In some cases, the
monodromy can be calculated explicitly, for instance, for the affine KZ [C6,
C7, C8].

0.1.4 Integral formulas for KZ

The main applications of the interpretation of KZ as a system of equations
for the coinvariant were: (i) a simplification of the algebraic part of the
Schechtman–Varchenko construction [SV] of integral formulas for the ratio-
nal KZ, (ii) a generalization of their formulas to the trigonometric case
[C9]. Paper [SV] is based on direct algebraic considerations without using

the theory of Kac–Moody algebras.
There is another important “integrable” case, the so-called Knizhnik–Za-

molodchikov–Bernard equation usually denoted by KZB [Be, FW1]. We will
see in Chapter 1 that it can be obtain in the same abstract manner as a
system of differential equations for the corresponding “elliptic” coinvariant.
There must be an implication of this fact toward the integral formulas for
KZB, but this has not been checked so far.

We do not discuss the integral formulas for KZB in this book, as well as the
integral formulas for QKZ, the quantum Knizhnik–Zamolodchikov equation.
See, e.g., [TV], [FV1], and [FTV].

Generally, the KZ equations can be associated with arbitrary algebraic
curves. Then they involve the derivatives with respect to the moduli of curves
and vector bundles. However, in this generality, the resulting equations are
non-integrable in any reasonable sense.

Summarizing, we have the following major cases, when the Knizhnik–
Zamolodchikov equation have integral formulas, reasonably simple monodromy
representations, special symmetries, and other important properties:
(a) the KZ for Yang’s rational r–matrix (see [SV]),
(b) the trigonometric KZ equation introduced in [C9],
(c) the elliptic KZ–Bernard equation (see [Be, FW1]).

Given a Lie algebra g, one may define the integrand for the KZ integral
formulas is derectly connected with the coinvariants of U(ĝ) for the Weyl
modules [C9]. The contours (cycles) of integration are governed by the quan-
tum Uq(g). See [FW2], [Va] and references therein. We will not discuss the
contours and the q–topology of the configuration spaces in this book.

The later topic was started by Aomoto [A1, AKM] and seems an end-
less story. We have no satisfactory formalization of the q–topology so far.
It is especially needed for QKZ. Generally, in mathematics, the contours of
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10 CHAPTER 0. INTRODUCTION

integration (the homology) must be dual to the differential forms (the coho-
mology). It gives an approach to the problem.

We note that the integral KZ formulas are directly connected with the
equivalence of the U(ĝ)c and the quantum group Uq(g) due to Kazhdan,
Lusztig, and Finkelberg (see [KL2]). It is for a proper relation c ↔ q.

0.1.5 From KZ to spherical functions

Let us discuss what the integral formulas could give for the theory of spherical
functions and its generalizations. There are natural limitations.

First, only the spherical functions of type A may apper (for either choice
of g) if we begin with the KZ integral formulas of type A.

Second, one needs an r–matrix KZ of trigonometric type because the
Harish-Chandra theory is on the torus.

Third, only g = glN may result in scalar differential operators due to the
analysis by Etingof and Kirillov Jr.

Summarizing, the integral formulas for the affine KZ (AKZ) of type A are
the major candidates. The AKZ is isomorphic to the quantum many-body
problem, that is exactly the k–Harish-Chandra theory [Mat, C11].

Note that the “basic” trigonometric n–point KZ taking values in the 0–
weight component of (Cn)⊗n, which is isomorphic to the group algebra CSn,
must be considred for AKZ. The integral AKZ formula is likely to be directly
connected with the Harish-Chandra formula. I did not check it, but calcu-
lations due to Mimachi, Felder, Varchenko confirm this. For instance, the
dimension of the contours (cycles) of integration for such KZ is n(n − 1)/2,
which coincides with that in the Harish-Chandra integral representation for
spherical functions of type An−1. His integral is over K = SOn ⊂ SLn(R).

Establishing a direct connection with the Harsh-Chandra integral repre-
sentation for the spherical functions does not seem too difficult. However it
is of obvious importance, because his formula is for all root systems, and one
can use it as an initial point for the general theory of integral formulas of the
KZ equations associated with root systems.

We note that the integral KZ formulas can be justified without Kac–
Moody algebras. A straightforward algebraic combinatorial analysis is com-
plicated but possible [SV]. The proof presented in this book is based on the
Kac–Moody coinvariant [C9]. However, I use the Kac–Moody algebras at the
critical level only, as a technical tool, and then extend the resulting formulas
to all values of the center charge.

There is another approach to the same integral formulas based on the
coinvariant for the Wakimoto modules instead of that for the Weyl modules
[FFR]. The calculations with the coinvariant are in fact similar to mine, but
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