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An introduction to
computer-intensive methods

What are computer-intensive data methods?

For the purposes of this book, I define computer-intensive methods as

those that involve an iterative process and hence cannot readily be done except

on a computer. The first case I examine is maximum likelihood estimation, which

forms the basis of most of the parametric statistics taught in elementary

statistical courses, though the derivation of the methods via maximum

likelihood is probably not often given. Least squares estimation, for example,

can be justified by the principle of maximum likelihood. For the simple cases,

such as estimation of the mean, variance, and linear regression analysis,

analytical solutions can be obtained, but in more complex cases, such as

parameter estimation in nonlinear regression analysis, whereas maximum

likelihood can be used to define the appropriate parameters, the solution can

only be obtained by numerical methods. Most computer statistical packages now

have the option to fit models by maximum likelihood but they typically require

one to supply the model (logistic regression is a notable exception).

The other methods discussed in this book may have an equally long history as

that of maximum likelihood, but none have been so widely applied as that of

maximum likelihood, mostly because, without the aid of computers, the

methods are too time-consuming. Even with the aid of a fast computer, the

implementation of a computer-intensive method can chew up hours, or even

days, of computing time. It is, therefore, imperative that the appropriate

technique be selected. Computer-intensive methods are not panaceas: the English

adage “you can’t make a silk purse out of a sow’s ear” applies equally well to

statistical analysis. What computer-intensive methods allow one to do is to apply

a statistical analysis in situations where the more “traditional” methods fail. It is

important to remember that, in any investigation, great efforts should be put
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into making the experimental design amenable to traditional methods, as these

have both well-understood statistical properties and are easily carried out, given

the available statistical programs. There will, however, inevitably be circum-

stances in which the assumptions of these methods cannot be met. In the next

section, I give several examples that illustrate the utility of computer-intensive

methods discussed in this book. Table 1.1 provides an overview of the methods

and comments on their limitations.

Why computer-intensive methods?

A common technique for examining the relationship between some

response (dependent) variable and one or more predictor (independent) variables

is linear and multiple regression. So long as the relationship is linear (and

satisfies a few other criteria to which I shall return) this approach is appropriate.

But suppose one is faced with the relationship shown in Figure 1.1, that is highly

nonlinear and cannot be transformed into a linear form or fitted by a polynomial

function. The fecundity function shown in Figure 1.1 is typical for many animal

species and can be represented by the four parameter (M,k,t0,b) model

F xð Þ ¼ Mð1� e�kðx�t0ÞÞe�bx ð1:1Þ

Using the principle of maximum likelihood (Chapter 2), it can readily be shown

that the “best” estimates of the four parameters are those that minimize the

residual sums of squares. However, locating the appropriate set of parameter

values cannot be done analytically but can be done numerically, for which most

statistical packages supply a protocol (see caption to Figure 1.1 for S-PLUS coding).

In some cases, there may be no “simple” function that adequately describes

the data. Even in the above case, the equation does not immediately “spring to

mind” when viewing the observations. An alternative approach to curve fitting

for such circumstances is the use of local smoothing functions, described in

Chapter 6. The method adopted here is to do a piece-wise fit through the data,

keeping the fitted curve continuous and relatively smooth. Two such fits are

shown in Figure 1.2 for the Drosophila fecundity data. The loess fit is less rugged

than the cubic spline fit and tends to de-emphasize the fecundity at the early

ages. On the other hand, the cubic spline tends to “over-fit” across the middle and

later ages. Nevertheless, in the absence of a suitable function, these approaches

can prove very useful in describing the shape of a curve or surface. Further,

it is possible to use these methods in hypothesis testing, which permits one

to explore how complex a curve or a surface must be in order to adequately

describe the data.
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Table 1.1 An overview of the techniques discussed in this book

Method Chapter

Parameter

estimation?

Hypothesis

testing? Limitations

Maximum

likelihood

2 Yes Yes Assumes a particular statistical

model and, generally, large samples

Jackknife 3 Yes Yes The statistical properties cannot

generally be derived from theory

and the utility of the method

should be checked by simulation

for each unique use

Bootstrap 4 Yes Possiblea The statistical properties cannot

generally be derived from theory

and the utility of the method

should be checked by simulation

for each unique use. Very

computer-intensive.

Randomization 5 Possible Yes Assumes difference in only a

single parameter. Complex designs

may not be amenable to “exact”

randomization tests

Monte Carlo

methods

5 Possible Yes Tests are usually specific to a

particular problem. There may

be considerable debate over the

test construction.

Cross-validation 6 Yes Yes Generally restricted to regression

problems. Primarily a means of

distinguishing among models.

Local smoothing

functions and

generalized

additive

models

6 Yes Yes Does not produce easily

interpretable function coefficients.

Visual interpretation difficult

with more than two predictor

variables

Tree models 6 Yes Yes Can handle many predictor

variables and complex interactions

but assumes binary splits.

Bayesian methods 7 Yes Yes Assumes a prior probability

distribution and is frequently

specific to a particular problem

a
“Possible”¼Can be done but not ideal for this purpose.
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Figure 1.1 Fecundity as a function of age in Drosophila melanogaster with

a maximum likelihood fit of the equation F(x)¼M(1�ek(x�t0))e�bx. Data are

from McMillan et al. (1970).

Age (x) 3 4 5 6 7 8 9 10 13 14 15 16 17 18

F 32.1 51.8 66 58 60.5 57.2 49.1 49.3 51.4 45.7 44.4 35.1 35.2 33.6

S-PLUS coding for fit:

# Data contained in data file D

# Initialise parameter values

Thetas <- c(M¼1, k¼1, t0¼1, b¼.04)

# Fit model

Model <- nls(D[,2]~M*(1-exp(-k*(D[,1]-t0)))*exp(-b*D[,1]), start¼Thetas)

# Print results

summary(Model)

OUTPUT

Parameters:

Value Std. Error t value

M 82.9723000 7.52193000 11.03070

k 0.9960840 0.36527300 2.72696

t0 2.4179600 0.22578200 10.70930

b 0.0472321 0.00749811 6.29920
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An important parameter in evolutionary and ecological studies is the rate of

increase of a population, denoted by the letter r. In an age-structured population,

the value of r can be estimated from the Euler equation

1 ¼
X1

x¼0

e�rxlxmx ð1:2Þ

where x is age, lx is the probability of survival to age x and mx is the number of

female births at age x. Given vectors of survival and reproduction, the above

equation can be solved numerically and hence r calculated. But having an

estimate of a parameter is generally not very useful without also an estimate of
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Figure 1.2 Fecundity as a function of age in Drosophila melanogaster with two local

smoothing functions. Data given in Figure 1.1.

S-PLUS coding to produce fits:

# Data contained in file D. First plot observations # Plot points

plot (D[,1], D[,2])

Loess.model <- loess(D[,2]~D[,1], span¼1, degree¼2) # Fit loess model

# Calculate predicted curve for Loess model

x.limits <- seq(min(D[,1]), max(D[,1]), length¼50 # Set range of x

P.Loess <- predict.loess(Loess.model, x.limits, se.fit¼T) # Prediction

lines(x.limits, D.INT$fit) # Plot loess prediction

Cubic.spline <- smooth.spline(D[,1], D[,2]) # Fit cubic spline model

lines(Cubic.spline) # Plot cubic spline curve
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the variation about the estimate, such as the 95% confidence interval. There are

two computer-intensive solutions to this problem, the jackknife (Chapter 3) and

the bootstrap (Chapter 4). The jackknife involves the sequential deletion

of a single observation from the data set (a single animal in this case) giving

n (¼ number of original observations) data sets of n�1 observations whereas

the bootstrap consists of generating many data sets by random selection (with

replacement) from the original data set. For each data set, the value of r is

calculated; from this set of values, each technique is able to extract both an

estimate of r and an estimate of the desired confidence interval.

Perhaps one of the most important computer-intensive methods is that of

hypothesis testing using randomization, discussed in Chapter 5. This method

can replace the standard tests, such as the �2 contingency test, when the

assumptions of the test are not met. The basic idea of randomization testing is

to randomly assign the observations to the “treatment” groups and calculate

the test statistic: this process is repeated many (typically thousands) times

and the probability under the null hypothesis of “no difference” estimated by the

proportion of times the test statistic from the randomized data sets exceeded the

test statistic from the observed data set. To illustrate the process, I shall relate an

investigation into genetic variation among populations of shad, a commercially

important fish species.

To investigate geographic variation among populations of shad, data on

mitochondrial DNA variation were collected from 244 fish distributed over

14 rivers. This sample size represented, for the time, a very significant output

of effort. Ten mitochondrial haplotypes were identified with 62% being of

a single type. The result was that almost all cells had less than 5 data points

(of the 140 cells, 66% had expected values less than 1.0 and only 9% had expected

values greater than 5). Following Cochran’s rules for the �2 test, it was necessary

to combine cells. This meant combining the genotypes into two classes, the most

common one and all others. The calculated �2 for the combined data set was

22.96, which just exceeded the critical value (22.36) at the 5% level. The estimated

value of �2 for the uncombined data was 236.5, which was highly significant

(P < 0.001) based on the �2 with 117 degrees of freedom. However, because of the

very low frequencies within many cells, this result was suspect. Rather than

combining cells and thus losing information, we (Roff and Bentzen 1989) used

randomization (Chapter 5) to test if the observed �2 value was significantly larger

than the expected value under the null hypothesis of homogeneity among the

rivers. This analysis showed that the probability of obtaining a �2 value as large

or larger than that observed for the ungrouped data was less than one in a

thousand. Thus, rather than being merely marginally significant the variation

among rivers was highly significant.
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Most of the methods described in this book follow the frequentist school in

asking “What is the probability of observing the set of n data x1,x2, . . . , xn given

the set of k parameters �1,�2, . . . , �k?” In Chapter 7 this position is reversed by the

Bayesian perspective in which the question is asked “Given the set of n data

x1, x2, . . . , xn, what is the probability of the set of k parameters �1,�2, . . . , �k?” This

“reversal” of perspective is particularly important when management decisions

are required. For example, suppose we wish to analyze the effect of a harvesting

strategy on population growth: in this case the question we wish to ask is “Given

some observed harvest, say x, what is the probability that the population rate of

increase, say �, is less than 1 (i.e., the population is declining)?” If this probability

is high then it may be necessary to reduce the harvest rate. In Bayesian analysis,

the primary focus is frequently on the probability statement about the parameter

value. It can, however, also be used, as in the case of the James–Stein estimator, to

improve on estimates. Bayesian analysis generally requires a computer-intensive

approach to estimate the posterior distribution.

Why S-PLUS?

There are now numerous computer packages available for the statistical

analysis of data, making available an array of techniques hitherto not possible

except in some very particular circumstances. Many packages have some

computer-intensive methods available, but most lack flexibility and hence are

limited in use. Of the common packages, SAS and S-PLUS possess the breadth of

programming capabilities necessary to do the analyses described in this book.

I chose S-PLUS for three reasons. First, the language is structurally similar

to programming languages with which the reader may already be familiar

(e.g., BASIC and FORTRAN. It differs from these two in being object oriented).

In writing the coding, I have attempted to keep a structure that could be

transported to another language: this has meant in some cases making more use

of looping than might be necessary in S-PLUS. While this increases the run time,

I believe that it makes the coding more readable, an advantage that outweighs

the minor increase in computing time. The second reason for selecting S-PLUS is

that there is a version in the public domain, known as R. To quote the web site

(http://www.r-project.org/), “R is a language and environment for statistical com-

puting and graphics. It is a GNU project which is similar to the S language and

environment which was developed at Bell Laboratories (formerly AT&T, now

Lucent Technologies) by John Chambers and colleagues. R can be considered as a

different implementation of S. There are some important differences, but much

code written for S runs unaltered under R.” The programs written in this book

will, with few exceptions, run under R. The user interface is definitely better in
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S-PLUS than R. My third reason for selecting S-PLUS is that students, at present,

can obtain a free version for a limited period at http://elms03.e-academy.com/

splus/.

Further reading

Although S-PLUS has a fairly steep learning curve there are several excellent text books

available, my recommendations being:

Spector, P. (1994). An Introduction to S and S-PLUS. Belmont, California: Duxbury Press.

Krause, A. and Olson, M. (2002). The Basics of S-PLUS. New York: Springer.

Crawley, M. J. (2002). Statistical Computing: An Introduction to Data Analysis using S-PLUS.

UK: Wiley and Sons.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. New York:

Springer.

An overview of the language with respect to the programs used in this book is

presented in the appendices.
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2

Maximum likelihood

Introduction

Suppose that we have a model with a single parameter, �, that predicts

the outcome of an event that has some numerical value y. Further, suppose we

have two choices for the parameter value, say �1 and �2, where �1 predicts

that the numerical value of y will occur with a probability p1 and �2 predicts that

the numerical value of y w‘ill occur with a probability p2. Which of the two

choices of � is the better estimate of the true value of � ? It seems reasonable to

suppose that the parameter value that gave the highest probability of actually

observing what was observed would be the one that is also closer to the true value

of �. For example, if p1 equals 0.9 and p2 equals 0.1, then we would select �1 over

�2, because the model with �2 predicts that one is unlikely to observe y, whereas

the model with �1 predicts that one is quite likely to observe y. We can extend this

idea to many values of � by writing our predictive model as a function of the

parameter values, ’(�i)¼pi, where i designates particular values of �. More

generally, we can dispense with the subscript and write ’(�)¼p, thereby allowing

� to take on any value. By the principle of maximum likelihood we select the

value of � that has the highest associated probability, p.

The important element of maximum likelihood estimation (often contracted

to MLE) is that there is a definable probability function that can be used to

generate the likelihood of the observed event. The most frequently used prob-

ability functions are the normal distribution and the binomial distribution.

There are three areas to be considered:

(1) Point estimation. Given some statistical model with k unknown

parameters �1,�2, . . . ,�k how do we use MLE to obtain estimates of

these parameters, denoted as �̂1, �̂2, . . . , �̂k?

(2) Interval estimation. Having the set of estimates �̂1, �̂2, . . . , �̂k is only

marginally useful, because we have no idea whether the estimates are
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likely to be close to or far from the true values. In conjunction with point

estimation we must, therefore, also estimate a confidence region for the

estimates, typically 95%.

(3) Hypothesis testing. In many instances, we are interested in testing

hypotheses about the parameter values: for example, given two data sets

we could test the hypothesis that they have a common mean. Maximum

likelihood provides a mechanism to both compare different parameter

values and to compare different statistical models.

Point estimation

Why the mean?

The underlying distribution of much of statistical estimation is the

normal distribution (Figure 2.1). Under this distribution, the probability of

observing a value, say x, is given by

’ðxÞ ¼ 1

�
ffiffiffiffiffiffi
2�

p e�
1
2

x��
�ð Þ2 ð2:1Þ

where ’(x) is called the probability density function of x. This function is

symmetrical and characterized by two parameters � and �. Anyone who has had a

first course in statistics will recognize these two as the “mean” and the “standard

deviation,” respectively. The mean is a measure of central tendency, and the

standard deviation a measure of spread of the distribution (Figure 2.1). We

typically estimate the parameter � as the arithmetic average

�̂ ¼ 1

n

Xn

i¼1

xi ð2:2Þ

where n is the number of observations and xi is the ith observation. The “hat”

over � indicates that this is an estimate of the true value of �: this is a general

symbol for the estimate of a parameter, but in the case of the average, we

frequently use the symbol �x.

There are actually three measures of central tendency, the arithmetic average,

the mode (the most commonly occurring value), and the median (the value

that divides the sample into two equal portions). Why should we use the

arithmetic average as the estimate of �? The use of the arithmetic average

as the preferred estimate of � can be justified by the fact that it is the

maximum likelihood estimate of �. Suppose we have a sample of n observations

10 Maximum likelihood
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