
CHAPTER 1

Introduction

1.1 MEANS AND ENDS

Much of applied statistics may be viewed as an elaboration of the linear regres-
sion model and associated estimation methods of least squares. In beginning
to describe these techniques, Mosteller and Tukey (1977), in their influential
text, remark:

What the regression curve does is give a grand summary for the averages of the
distributions corresponding to the set of xs. We could go further and compute
several different regression curves corresponding to the various percentage
points of the distributions and thus get a more complete picture of the set.
Ordinarily this is not done, and so regression often gives a rather incomplete
picture. Just as the mean gives an incomplete picture of a single distribution,
so the regression curve gives a correspondingly incomplete picture for a set
of distributions.

My objective in the following pages is to describe explicitly how to “go further.”
Quantile regression is intended to offer a comprehensive strategy for completing
the regression picture.

Why does least-squares estimation of the linear regression model so pervade
applied statistics? What makes it such a successful tool? Three possible answers
suggest themselves. One should not discount the obvious fact that the compu-
tational tractability of linear estimators is extremely appealing. Surely this was
the initial impetus for their success. Second, if observational noise is normally
distributed (i.e., Gaussian), least-squares methods are known to enjoy a certain
optimality. But, as it was for Gauss himself, this answer often appears to be an
ex post rationalization designed to replace the first response. More compelling
is the relatively recent observation that least-squares methods provide a general
approach to estimating conditional mean functions.

And yet, as Mosteller and Tukey suggest, the mean is rarely a satisfactory end
in itself, even for statistical analysis of a single sample. Measures of spread,
skewness, kurtosis, boxplots, histograms, and more sophisticated density es-
timation are all frequently employed to gain further insight. Can something
similar be done in regression? A natural starting place for this would be to
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2 Quantile Regression

supplement the conditional mean surfaces estimated by least squares with sev-
eral estimated conditional quantile surfaces. In the chapters that follow, methods
are described to accomplish this task. The basic ideas go back to the earliest
work on regression by Boscovich in the mid-18th century to Edgeworth at the
end of the 19th century.

1.2 THE FIRST REGRESSION: A HISTORICAL
PRELUDE

It is ironic that the first faltering attempts to do regression are so closely tied
to the notions of quantile regression. Indeed, as I have written on a previous
occasion, the present enterprise might be viewed as an attempt to set statistics
back 200 years, to the idyllic period before the discovery of least squares.

If least squares can be dated to 1805 by the publication of Legendre’s work
on the subject, then Boscovich’s initial work on regression was half a century
prior. The problem that interested Boscovich was the ellipticity of the earth.
Newton and others had suggested that the earth’s rotation could be expected
to make it bulge at the equator with a corresponding flattening at the poles,
making it an oblate spheroid, more like a grapefruit than a lemon. On the early
history of regression and the contribution of Boscovich in particular, Stigler
(1986) is the definitive introduction. Smith (1987) gives a detailed account of
the development of geodesy, focusing attention on the efforts that culminated
in the data appearing in Table 1.1.

To estimate the extent of this effect, the five measurements appearing in
Table 1.1 had been made. Each represented a rather arduous direct measure-
ment of the arc-length of 1◦ of latitude at five quite dispersed points – from
Quito on the equator to a site in Lapland at 66◦19′N. It was clear from these mea-
surements that arc length was increasing as one moved toward the pole from
the equator, thus qualitatively confirming Newton’s conjecture. But how the
five measurements should be combined to produce one estimate of the earth’s
ellipticity was unclear.

For short arcs, the approximation

y = a + b sin2 λ, (1.1)

Table 1.1. Boscovich ellipticity data

Location Latitude sin2 (Latitude) Arc Length

Quito 0◦ 0′ 0 56,751
Cape of Good Hope 33◦ 18′ 0.2987 57,037
Rome 42◦ 59′ 0.4648 56,979
Paris 49◦ 23′ 0.5762 57,074
Lapland 66◦ 19′ 0.8386 57,422
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Figure 1.1. Boscovich ellipticity example. Boscovich computed all the pair-
wise slopes and initially reported a trimmed mean of the pairwise slopes as a
point estimate of the earth’s ellipticity. Arc length is measured as the excess
over 56,700 toise per degree where one toise ≈ 6.39 feet, or 1.95 meters.

where y is the length of the arc and λ is the latitude, was known to be satisfactory.
The parameter a could be interpreted as the length of a degree of arc at the
equator and b as the exceedence of a degree of arc at the pole over its value
at the equator. Ellipticity could then be computed as 1/ellipticity = η = 3a/b.
Boscovich, noting that any pair of observations could be used to compute an
estimate of a and b, hence of η, began by computing all ten such estimates.
These lines are illustrated in Figure 1.1. Some of these lines seemed quite
implausible, especially perhaps the downward-sloping one through Rome and
the Cape of Good Hope. Boscovich reported two final estimates: one based on
averaging all ten distinct estimates of b, the other based on averaging all but two
of the pairwise slopes with the smallest implied exceedence. In both cases the
estimate of a was taken directly from the measured length of the arc at Quito.
These gave ellipticities of 1/155 and 1/198, respectively. A modern variant on
this idea is the median of pairwise slopes suggested by Theil (1950), which
yields the somewhat lower estimate of 1/255.

It is a curiosity worth noting that the least-squares estimator of (a, b) may
also be expressed as a weighted average of the pairwise slope estimates. Let h
index the ten pairs, and write

b(h) = X (h)−1 y(h), (1.2)

where, for the simple bivariate model and h = (i, j),

X (h) =
(

1 xi

1 x j

)
y(h) =

(
yi

y j

)
; (1.3)
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4 Quantile Regression

then we may write the least-squares estimator as

b̂ =
∑

h

w(h)b(h), (1.4)

where w(h) = |X (h)|2/ ∑
h |X (h)|2. As shown by Subrahmanyam (1972) and

elaborated by Wu (1986), this representation of the least-squares estimator
extends immediately to the general p-parameter linear regression model. In
the bivariate example the weights are obviously proportional to the distance
between each pair of design points, a fact that, in itself, portends the fragility
of least squares to outliers in either x or y observations.

Boscovich’s second attack on the ellipticity problem formulated only two
years later brings us yet closer to quantile regression. In effect, he suggests
estimating (a, b) in (1.1) by minimizing the sum of absolute errors subject to
the constraint that the errors sum to zero. The constraint requires that the fitted
line pass through the centroid of the observations, (x̄, ȳ). Boscovich provided a
geometric algorithm, which was remarkably simple, to compute the estimator.
Having reduced the problem to regression through the origin with the aid of the
constraint, we may imagine rotating a line through the new origin at (x̄, ȳ) until
the sum of absolute residuals is minimized. This may be viewed algebraically,
as noted later by Laplace, as the computation of a weighted median. For each
point we may compute

bi = yi − ȳ

xi − x̄
(1.5)

and associate with each slope the weight wi = |xi − x̄ |. Now let b(i) be the
ordered slopes and w(i) the associated weights, and find the smallest j , say j∗,
such that

j∑
i=1

w(i) >
1

2

n∑
i=1

w(i) (1.6)

The Boscovich estimator, β̂ = b( j∗), was studied in detail by Laplace in 1789 and
later in his monumental Traite de Méchanique Céleste. Boscovich’s proposal,
which Laplace later called the “method of situation,” is a curious blend of mean
and median ideas; in effect, the slope parameter b is estimated as a median,
while the intercept parameter a is estimated as a mean.

This was clearly recognized by Edgeworth, who revived these ideas in 1888
after nearly a century of neglect. In his early work on index numbers and
weighted averages, Edgeworth had emphasized that the putative optimality of
the sample mean as an estimator of location was crucially dependent on the as-
sumption that the observations came from a common normal distribution. If the
observations were “discordant,” say from normals with different variances, the
median, he argued, could easily be superior to the mean. Indeed, anticipating
the work of Tukey in the 1940s, Edgeworth compares the asymptotic vari-
ances of the median and mean for observations from scale mixtures of normals,
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Introduction 5

concluding that, for equally weighted mixtures with relative scale greater
than 2.25, the median had smaller asymptotic variance than the mean.

Edgeworth’s work on median methods for linear regression brings us directly
to quantile regression. Edgeworth (1888) discards the Boscovich–Laplace con-
straint that the residuals sum to zero and proposes to minimize the sum of
absolute residuals in both intercept and slope parameters, calling it a “double
median” method and noting that it could be extended, in principle, to a “plural
median” method. A geometric algorithm was given for the bivariate case, and
a discussion of conditions under which one would prefer to minimize abso-
lute error rather than the by-then well-established squared error is provided.
Unfortunately, the geometric approach to computing Edgeworth’s new median
regression estimator was rather awkward, requiring, as he admitted later, “the
attention of a mathematician; and in the case of many unknowns, some power
of hypergeometrical conception.” Only considerably later did the advent of lin-
ear programming provide a conceptually simple and efficient computational
approach.

Once we have a median regression estimator it is natural to ask, “are there
analogs for regression of the other quantiles?” The answer to this question is
explored in the next section.

1.3 QUANTILES, RANKS, AND OPTIMIZATION

Any real-valued random variable X may be characterized by its (right-
continuous) distribution function

F(x) = P(X ≤ x), (1.7)

whereas for any 0 < τ < 1,

F−1(τ ) = inf{x : F(x) ≥ τ } (1.8)

is called the τ th quantile of X . The median, F−1(1/2), plays the central role.
The quantiles arise from a simple optimization problem that is fundamental to

all that follows. Consider a simple decision theoretic problem: a point estimate
is required for a random variable with (posterior) distribution function F . If
loss is described by the piecewise linear function illustrated in Figure 1.2

ρτ (u) = u(τ − I (u < 0)) (1.9)

for some τ ∈ (0, 1), find x̂ to minimize expected loss. This is a standard exercise
in decision theory texts (e.g., Ferguson, 1967, p. 51). The earliest reference
that I am aware of is Fox and Rubin (1964), who studied the admissibility of
the quantile estimator under this loss function. We seek to minimize

Eρτ (X − x̂) = (τ − 1)
∫ x̂

−∞
(x − x̂)d F(x) + τ

∫ ∞

x̂
(x − x̂)d F(x). (1.10)
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6 Quantile Regression

 ττ−1

ρτ (u)

Figure 1.2. Quantile regression ρ function.

Differentiating with respect to x̂ , we have

0 = (1 − τ )
∫ x̂

−∞
d F(x) − τ

∫ ∞

x̂
d F(x) = F(x̂) − τ. (1.11)

Since F is monotone, any element of {x : F(x) = τ } minimizes expected loss.
When the solution is unique, x̂ = F−1(τ ); otherwise, we have an “interval of
τ th quantiles” from which the smallest element must be chosen – to adhere to
the convention that the empirical quantile function be left-continuous.

It is natural that an optimal point estimator for asymmetric linear loss should
lead us to the quantiles. In the symmetric case of absolute value loss it is well
known to yield the median. When loss is linear and asymmetric, we prefer a
point estimate more likely to leave us on the flatter of the two branches of
marginal loss. Thus, for example, if an underestimate is marginally three times
more costly than an overestimate, we will choose x̂ so that P(X ≤ x̂) is three
times greater than P(X > x̂) to compensate. That is, we will choose x̂ to be the
75th percentile of F .

When F is replaced by the empirical distribution function

Fn(x) = n−1
n∑

i=1

I (X i ≤ x), (1.12)

we may still choose x̂ to minimize expected loss:
∫

ρτ (x − x̂)d Fn(x) = n−1
n∑

i=1

ρτ (xi − x̂) (1.13)

and doing so now yields the τ th sample quantile. When τn is an integer there
is again some ambiguity in the solution, because we really have an interval
of solutions, {x : Fn(x) = τ }, but we shall see that this is of little practical
consequence.

Much more important is the fact that we have expressed the problem of
finding the τ th sample quantile, a problem that might seem inherently tied to
the notion of an ordering of the sample observations, as the solution to a simple
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Introduction 7

optimization problem. In effect we have replaced sorting by optimizing. This
will prove to be the key idea in generalizing the quantiles to a much richer
class of models in subsequent chapters. Before doing this, though, it is worth
examining the simple case of the ordinary sample quantiles in a bit more detail.

The problem of finding the τ th sample quantile, which may be written as

min
ξ∈R

n∑
i=1

ρτ (yi − ξ ), (1.14)

may be reformulated as a linear program by introducing 2n artificial, or “slack,”
variables {ui , vi : 1, . . . , n} to represent the positive and negative parts of the
vector of residuals. This yields the new problem

min
(ξ,u,v)∈R×R

2n+

{
τ1	

n u + (1 − τ )1	
n v|1nξ + u − v = y

}
, (1.15)

where 1n denotes an n-vector of 1. Clearly, in (1.15) we are minimizing a linear
function on a polyhedral constraint set consisting of the intersection of the
(2n + 1)-dimensional hyperplane determined by the linear equality constraints
and the set R × R

2n
+ .

Figure 1.3 illustrates the most elementary possible version of the median
linear programming problem. We have only one observation, at y = 1, and we
wish to solve

min
(ξ,u,v)∈R×R

2+
{u + v|ξ + u − v = y}.

The constraint set is the triangular region representing the intersection of the
plane {(ξ, u, v)|ξ + u − v = 1} with the cone {(ξ, u, v) ∈ R

3|u ≥ 0, v ≥ 0}.
The long edge of this triangle extends off into the deeper regions of the figure.
The objective function is represented by a series of vertical planes perpendic-
ular to the 45◦ line in the (u, v) (horizontal) plane. Moving toward the origin
reduces u + v , thus improving the objective function. It is apparent that any
feasible point (ξ, u, v) that has both u and v strictly positive can be improved
by reducing v and increasing u to compensate. But with only one observation
we can move further. Reducing u and increasing ξ to compensate – that is,
moving along the interior edge of the constraint set – allows us to reduce the
objective function to zero, setting ξ = 1, coming to rest at the upper-left corner
of the constraint set. Now, if we try to imagine increasing the number of obser-
vations, we have contributions to the objective function from each observation
like the one illustrated in Figure 1.3. Given a trial value of the parameter ξ , we
can consider a feasible point that sets each ui equal to the positive part of the
residual yi − ξ and vi equal to the negative part of the i th residual. But, as in
Figure 1.3, such solutions can always be improved by moving ξ closer to one
of the sample observations.

Many features of the solution are immediately apparent from these simple
observations. To summarize, min{ui , vi } must be zero for all i , because oth-
erwise the objective function may be reduced without violating the constraint
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8 Quantile Regression
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Figure 1.3. Computing the median with one observation. The figure illustrates
the linear programming formulation of the median problem. The triangular
region represents the constraint set; the vertical planes represent two different
contours of the objective function, which decreases as ones moves toward the
origin in the (u, v)-plane.

by shrinking such a pair toward zero. This is usually called complementary
slackness in the terminology of linear programming. Indeed, for essentially the
same reason we can restrict attention to “basic solutions” of the form ξ = yi

for some observation i . Figure 1.4 depicts objective function (1.14) for three
different random samples of varying sizes. The graph of the objective function
is convex and piecewise linear with kinks at the observed yi s. When ξ passes
through one of these yi s, the slope of the objective function changes by exactly
1 since a contribution of τ − 1 is replaced by τ or vice versa.

Optimality holds at a point ξ̂ if the objective function

R(ξ ) =
n∑

i=1

ρτ (yi − ξ )

is increasing as one moves away from ξ̂ to either the right or the left. This
requires that the right and left derivatives of R are both nonnegative at the point
ξ̂ . Thus,

R′(ξ+) ≡ lim
h→0

(R(ξ + h) − R(ξ ))/h =
n∑

i=1

(I (yi < ξ + 0) − τ )
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Figure 1.4. Quantile objective function with random data. The figure illus-
trates the objective function for the optimization problem defining the ordinary
τ = 1/3 quantile for three different random problems with yi s drawn from
the standard normal distribution and sample sizes 7, 12, and 23. The vertical
dotted lines indicate the position of the observations in each sample. Note that
because 12 is divisible by 3, the objective function is flat at its minimum in
the middle figure, and we have an interval of solutions between the fourth-
and fifth-largest observations.

and

R′(ξ−) ≡ lim
h→0

(R(ξ − h) − R(ξ ))/h =
n∑

i=1

(τ − I (yi < ξ − 0))

must both be nonnegative, and so nτ lies in the closed interval [N−, N+], where
N+ denotes the number of yi less than or equal to ξ and N− denotes the number
of yi strictly less than ξ . When nτ is not an integer, there is a unique value of
ξ that satisfies this condition. Barring ties in the yi s, this value corresponds to
a unique order statistic. When there are ties, ξ is still unique, but there may be
several yi equal to ξ . If nτ is an integer then ξ̂τ lies between two adjacent order
statistics. It is unique only when these order statistics coalesce at a single value.
Usually, we can dismiss the occurrence of such ties as events of probability
zero.

The duality connecting the sample quantiles and the ranks of the order statis-
tics is further clarified through the formal duality of linear programming. While
the primal problem, (1.15), may be viewed as generating the sample quantiles,
the corresponding dual problem may be seen to generate the order statistics, or
perhaps more precisely the ranks of the observations. This approach to ranks
generalizes naturally to the linear model, yielding an elegant generalization of
rank tests for the linear model.

1.4 PREVIEW OF QUANTILE REGRESSION

The observation developed in Section 1.3 that the quantiles may be expressed as
the solution to a simple optimization problem leads, naturally, to more general
methods of estimating models of conditional quantile functions. Least squares
offers a template for this development. Knowing that the sample mean solves
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10 Quantile Regression

the problem

min
µ∈R

n∑
i=1

(yi − µ)2 (1.16)

suggests that, if we are willing to express the conditional mean of y given x as
µ(x) = x	β, then β may be estimated by solving

min
β∈Rp

n∑
i=1

(
yi − x	

i β
)2

. (1.17)

Similarly, since the τ th sample quantile, α̂(τ ), solves

min
α∈R

n∑
i=1

ρτ (yi − α), (1.18)

we are led to specifying the τ th conditional quantile function as Q y(τ |x) =
x	β(τ ), and to consideration of β̂(τ ) solving

min
β∈Rp

n∑
i=1

ρτ

(
yi − x	

i β
)
. (1.19)

This is the germ of the idea elaborated by Koenker and Bassett (1978).
Quantile regression problem (1.19) may be reformulated as a linear program

as in (1.15):

min
(β,u,v)∈Rp×R

2n+

{
τ1	

n u + (1 − τ )1	
n v|Xβ + u − v = y

}
, (1.20)

where X now denotes the usual n by p regression design matrix. Again, we
have split the residual vector y − Xβ into its positive and negative parts, and
so we are minimizing a linear function on a polyhedral constraint set, and most
of the important properties of the solutions, β̂(τ ), which we call “regression
quantiles,” again follow immediately from well-known properties of solutions
of linear programs.

We can illustrate the regression quantiles in a very simple bivariate example
by reconsidering the Boscovich data. In Figure 1.5 we illustrate all of the distinct
regression quantile solutions for this data. Of the ten lines passing through pairs
of points in Figure 1.1, quantile regression selects only four. Solving (1.19) for
any τ in the interval (0, 0.21) yields as a unique solution the line passing through
Quito and Rome. At τ = 0.21, the solution jumps, and throughout the interval
(0.21, 0.48) we have the solution characterized by the line passing through
Quito and Paris. The process continues until we get to τ = 0.78, where the
solution through Lapland and the Cape of Good Hope prevails up to τ = 1.

In contrast to the ordinary sample quantiles that are equally spaced on the
interval [0,1], with each distinct order statistic occupying an interval of length
exactly 1/n, the lengths of the regression quantile solution intervals for τ ∈
[0, 1] are irregular and depend on the configuration of the design as well as
the realized values of the response variable. Pairs of points now play the role
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