Cambridge Studies in Applied Ecology and Resource Management

The rationale underlying much recent ecological research has been the necessity to understand the dynamics of species and ecosystems in order to predict and minimize the possible consequences of human activities. As the social and economic pressures for development rise, such studies become increasingly relevant, and ecological considerations have come to play a more important role in the management of natural resources. The objective of this series is to demonstrate how ecological research should be applied in the formation of rational management programmes for natural resources, particularly where social, economic or conservation issues are involved. The subject matter will range from single species where conservation or commercial considerations are important to whole ecosystems where massive perturbations like hydro-electric schemes or changes in land use are proposed. The prime criterion for inclusion will be the relevance of the ecological research to elucidate specific, clearly defined management problems, particularly where development programmes generate problems of incompatibility between conservation and commercial interests.

Timber production and biodiversity conservation in tropical rain forests

Editorial Board

Dr S. K. Eltringham. Department of Zoology, University of Cambridge, UK Dr J. Harwood. Sea Mammal Research Unit, Natural Environment Research Council, Cambridge, UK Dr D. Pimentel. Department of Entomology, Cornell University, USA Dr A. R. E. Sinclair. Institute of Animal Resource Ecology, University of British Columbia, Canada

Dr M. P. Sissenwine. National Marine Fisheries Service, Maryland, USA

Also in the series

Graeme Caughley, Neil Shephard & Jeff Short (eds.) Kangaroos: their ecology and management in the sheep rangelands of Australia

P. Howell, M. Lock & S. Cobb (eds.) The Jonglei canal: impact and opportunity Robert J. Judson, K. R. Drew & L. M. Baskin (eds.) Wildlife production systems: economic utilization of wild ungulates

M.S. Boyce The Jackson elk herd: intensive wildlife management in North America Mark R. Stanley Price Animal re-introductions: the Arabian Oryx in Oman R. Sukumar The Asian Elephant: ecology and management

K. Homewood & W.A. Rodgers Maasailand ecology: pastorialist development and wildlife conservation at Ngorongoro, Tanzania

D. Pimentel (ed.) World soil erosion and conservation

R.J. Scholes & B.H. Walker An African savanna: synthesis of the Nysvley study

T.D. Smith Scaling fisheries: the science of measuring the effects of fishing 1855–1955 Jim Hone Analysis of vertebrate pest control

TIMBER PRODUCTION AND BIODIVERSITY CONSERVATION IN TROPICAL RAIN FORESTS

Andrew Grieser Johns Research Associate Oxford Forestry Institute

Cambridge University Press	
0521607620 - Timber Production and Biodiversity Conservation in Tro	pical Rain Forests
Andrew Grieser Johns	
Frontmatter	
More information	

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York NY 10011–4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Andrew Grieser Johns 1997

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1997 First paperback edition 2004

Typeset in 11/14pt Times

A catalogue record for this book is available from the British Library

ISBN 0 521 57282 7 hardback ISBN 0 521 60762 0 paperback

Dedicated to the memory of ARTHUR MORRELL

CONTENTS

	Foreword by Jeffery Burley	xv
	Preface	xix
	Explanatory note	xxii
1	The issues	1
	Introduction	1
	The importance of the tropical timber trade	1
	The regional status of tropical forests	2
	Problems facing tropical forest management	5
	Insufficient reinvestment in the resource	6
	Inadequate infrastructures	6
	Forest invasion	7
	Inefficient species utilization	8
	Timber pricing systems	8
	Political instability	10
	Problems facing tropical forest preservation	10
	Forest and biodiversity conservation: the rationale	
	for an integrated approach	11
	The concept of sustainable management	13
	Summary	16
2	The history and development of tropical forestry	17
	Historical background	17
	The pre-colonial era	17
	The colonial and post-colonial eras	18
	Tropical forestry practices	19
	Non-timber harvesting	20

Cambridge University Press	
0521607620 - Timber Production and Biodiversity Conservation in Tropical Rain	Forests
Andrew Grieser Johns	
Frontmatter	
More information	

Х

Non-intensive timber harvesting	21
Intensive timber harvesting	22
Forest management systems	23
Replacement systems	24
Clearing systems	25
Natural regeneration systems	25
Restoration systems	26
Summary	26
3 Changes in the physical environment	27
Introduction	27
Microclimate	28
Types of microclimatic change	28
Cloud forest	29
Some direct effects of microclimatic change	30
Soil, water and nutrients	31
Soil damage and loss	31
Water flow and sediment yield	33
Nutrients	34
Some direct effects of soil damage and loss of	
water quality	36
The special case of periodically inundated forests	37
Mangrove forest	37
Várzea	38
Some wider implications of environmental change	39
Climatic shifts	39
Susceptibility to burning	41
Summary	41
4 Forest regeneration and gap dynamics	43
Introduction	43
Damage levels	44
Changes in forest structure	45
Changes in forest composition	48
Community level changes	48
Changes in species composition	49
Tree regeneration and gap dynamics	51
Gap dynamics	51
Gap size	51
Gap frequency	53

Cambridge University Press		
0521607620 - Timber Production and Biodiversity Conservation in Tropical	Rain	Forests
Andrew Grieser Johns		
Frontmatter		
More information		

Contents	xi
Timing of gap formation	53
Tree phenology	53
Management to promote timber tree regeneration	55
Summary	57
5 Responses of individual animal species	58
Introduction	58
Limitations of the data	59
Folivores	59
Invertebrates	59
Smaller vertebrates	61
Large terrestrial browsers	63
Exudate specialists	63
Pygmy marmosets	65
Frugivores and seed predators	66
Uakaris and bearded sakis	67
Other frugivorous primates	68
Squirrels	70
Frugivorous bats	70
Hornbills	72
Other frugivorous birds	74
Nectarivores	76
Social organization in hummingbirds	77
Frugivore-folivores	79
Primates	79
Giant flying squirrels	85
Ungulates	85
Rodents	86
Insectivores	87
Understorey birds	87
Canopy birds	92
Commensal insectivores	92
Bats	94
Insectivore-frugivores	94
Primates	95
Transient understorey birds	97
Predators	97
Civets	99
Decomposers	101
Summary	102

xii Contents

6	Responses of species assemblages	103
	Introduction	103
	Changes within species assemblages	104
	Litter invertebrates	104
	Birds	106
	Mammals	107
	Attributes of species assemblages	112
	Describing changes within assemblages	112
	Species richness and diversity indices	113
	Indices of similarity	118
	Indicator species	120
	Indicators of logging impacts	120
	Flagship species as indicator species	122
	Summary	122
7	Using ecological data in forest management planning	124
	Introduction	124
	The problem of spatial heterogeneity	125
	Structural variation	125
	Variation in species composition	125
	Inter-site comparisons: information content	127
	Species assemblages	128
	Guilds	129
	Individual species abundances	131
	Applying local data to a wider forest estate	131
	Making management recommendations	132
	Management to retain biodiversity	133
	Management for sustainability	133
	Summary	136
8	Intervention to maintain biodiversity	137
	The role of interventions	137
	Habitat preservation	138
	Refuges	139
	Corridors	145
	Corridors as habitat	145
	Corridors as dispersal routes	147
	An example of the importance of habitat	
	preservation	148
	Conservation of specific resources	149

Cambridge University Press	
0521607620 - Timber Production and Biodiversity Conservation in Tropical Rain Fore	sts
Andrew Grieser Johns	
Frontmatter	
More information	

Contents	xiii
Keystone food trees	149
Standing and fallen deadwood	153
Tree cavities	154
Cavities as limiting factors	155
Primary hole nesters	156
Creating or retaining cavities	156
Enrichment planting	157
Re-logging schedules	158
Compensatory plantations	159
Plantations as a means of reducing deforestation	160
Plantations as substitute timber sources	160
Plantations as buffer zones	161
Reducing edge effects	161
Provision of additional habitat	162
Summary	163
9 Field procedures	165
Damage limitation	165
Guidelines for conserving biological diversity	166
Pre-felling procedures	167
Silvicultural enumeration	168
Topographic survey	168
Harvesting inventory	169
Climber cutting	171
Harvesting procedures	172
Roading	172
Felling	172
Extraction	175
Post-felling procedures	176
Clean-up procedures	176
Water run-off control	176
Post-felling stand inventory	177
Post-felling biodiversity inventory	177
Rules and regulations	178
Examples of current 'best practice' management	
systems	179
Summary	181
10 The future	182
Integrated management of tropical forests	182

Cambridge University Press		
0521607620 - Timber Production and Biodiversity Conservation in Tropical R	t ain	Forests
Andrew Grieser Johns		
Frontmatter		
More information		

xiv Contents

Management priorities	182
Management for biodiversity	183
Species extinctions	185
A conservation ethos	187
Summary	188
References	190
Subject index	210

FOREWORD

It is a great privilege to be asked to write the foreword to this book for three reasons.

First, the scientific quality of the book and its professionally significant implications are outstanding and the author should be congratulated. The roles of forests in human welfare and environmental sustainability are now widely recognized, including the role of man-made plantations. Throughout the world there is an increasing recognition of the needs for and benefits of trees and forests for an ever-widening range of products and services. Among the products, timber is still the most important because of its wide range of uses and because of the increasing sophistication of the wood-using industries in converting timber efficiently, making long-lasting products and reducing adverse environmental impacts. Unfortunately, the timber industry has received considerable ill-founded criticism in the last decade concerning its alleged role in causing tropical deforestation. Equally there has been criticism of plantations, particularly with exotic species, on the alleged grounds that they damage soils, use all available agricultural water, reduce natural biodiversity and deprive poor people of either land rights or employment. While there are undoubtedly cases where such criticisms are justified, there is increasing concern throughout the industry to seek wiser management and sustainable exploitation of forests for all their benefits. This book should add to our understanding and achievement of such aims.

Second, it is a privilege to recognize the contribution of Mr Daniel Kemp, Chairman of Timbmet Group Limited, who by financial contribution to the Oxford Forestry Institute facilitated the preparation of this book. Mr Kemp came to Britain in 1938 as a refugee and helped his father establish a timber business. Following his father's death in 1959 he developed this into a thriving timber importing business that is widely reputed throughout the tropical world

xvi Foreword

as an honest and concerned company prepared to discuss frankly forest management as well as wood use and the company's environmental impact. Mr Kemp was a great friend of Mr Arthur Morrell to whose memory he wishes this book to be dedicated.

Third, it is my privilege to share in the recognition of Arthur Morrell and I am grateful to Mr Bob Plumptre and Mr Geoff Pleydell for their help in preparing this summary of Arthur's life.

Arthur Morrell spent all his working life in the British timber trade. He started in 1939 at a very young age as a junior member of the staff of the Nottingham branch of Fitchett and Woollacott; he became a director of the same firm in 1966 and joint managing director in 1980. In the early 1980s he moved to run the operations of Parker Kislingbury in Herefordshire and later became Chairman of the hardwood interests of Mallinson-Denny, which was subsequently purchased by Hunter Timber within the Wickes Group. Retirement in 1990 was only nominal. He became Chairman of the National Hardwood Association of the Timber Trade Federation, a leading player in the industry's 'Forests For Ever' programme and the trade adviser to the UK delegation to the International Tropical Timber Organization (ITTO). He was also a consultant to Timbmet and a non-executive director of his old company, Fitchett and Woollacott.

It is hardly surprising that, after 51 years in the hardwood timber trade, Arthur knew something about timber and the trade. He had extensive knowledge, not only of the commonly traded timbers, but had engaged in repeated trials of 'lesser-known' species from as early as the 1960s. It might have been expected that after such a long career in the trade he would be somewhat intolerant of strong, anti-trade, environmental views, particularly those which ignored the practicalities of marketing and utilizing timber. However, it was clear that his huge love for wood and his knowledge of its versatility as a material made him particularly determined that wood should be conserved and used in ways that promoted the continued existence and good management of forests and all the benefits accruing from them.

He was a practical conservationist in the best sense and cared enough to be prepared to spend an immense amount of time and energy in trying to bridge the gap between the environmental lobby and the trade. This care was demonstrated by the fact that he was always ready to listen to anyone's views, however extreme, answering them fairly, but very often openly and honestly on what he considered were their merits.

His skills as a chairman and as an arbitrator in a dispute were remarkable, partly because of his respect for people in their own right, which brought with it an ability to see both sides of a dispute, and partly because his sense of

Foreword

xvii

proportion and humour made it difficult to be angry with him for any length of time. This was demonstrated many times in ITTO meetings during long and sometimes heated discussions on the problems of harvesting and managing tropical forests sustainably. In his work with ITTO he frequently promoted or supported the funding of pragmatic and achievable projects designed to solve these problems.

Perhaps the most enduring memory of Arthur is of a person for whom nothing, however apparently trivial it might be, was too much trouble for him, even when he was under considerable pressure, providing it was going to help someone.

> Jeffery Burley Director, Oxford Forestry Institute

PREFACE

In the late 1970s, I was somewhat surprised to find myself conducting the first detailed work on the ecological effects of timber logging in a tropical rain forest. Surprised, that is, that so little had been conducted beforehand. Due mainly to the medium of television, enormous public interest had been kindled concerning the fate of the rain forests. In response to this interest, a flood of popular and scientific books and articles reporting on the consequences of tropical forest loss had been unleashed. The extent of clearance of tropical forest for shifting or plantation agriculture, cattle ranching or other human activities was widely and often acrimoniously debated.

All the fuss focussed exclusively on deforestation, which could conveniently be tracked by satellite technology and did not require much by way of actual field research. After deforestation, timber logging was the second most important human influence on tropical forests. It was known to affect $50\,000 \,\mathrm{km^2}$ of rain forest annually during the late 1970s and 1980s. Yet no-one had considered it appropriate to go into the field to research the effects logging might have on rain forest biodiversity. Forests subjected to timber logging were invariably included within 'deforestation' statistics. They were considered as lost to wildlife and ignored in forest conservation strategies.

Look down from an airplane flying over any extant tropical forest and the differences are quite obvious. Areas at the edge of the forest are continually being cleared to support the expanding human populations. These appear as bare ground, irregular outlines of crop fields or ranches, or serried ranks of plantation crops. Although a transition may be gradual, at some point the overt evidence of human presence will give way to an irregular tree canopy with occasional cleared patches and a snaking road network. This is the forest that has been logged but nevertheless remains as forest. Normally, quite a lot of this

xx Preface

will need to be traversed before reaching forests that appear pristine. If, indeed, there are any.

Travel the same distance on the ground and the differences are even more obvious. Agricultural areas, villages and an abundance of people give way to stands of trees, dense regenerating growth and an absence of people. Signs of animal life begin at the forest edge and become commoner in the interior. One thing becomes clear very quickly, the assumption that logged forests support none of the biodiversity of unlogged forest is plain wrong.

In 1983 I approached Cambridge University Press with the idea of publishing a book pointing out the possibilities for the integration of tropical forestry and biodiversity conservation strategies. At that time this was considered almost heretical. It remains controversial in some quarters, although it is now a much more acceptable approach. In 1983 my ideas were barely formed, however, and relied heavily on data I had just collected in South-East Asia. The idea was nevertheless encouraged by Robin Pellew, then an editor at the Press, although the importance of a global approach was stressed. I subsequently went back into the field to conduct further research, first to South America and later to Africa. By 1995 sufficient information had been collected, by myself, co-workers and independent scientists throughout the tropics, that a global analysis could confidently be undertaken.

The book relies a great deal on my original fieldwork, since this forms a large part of the available information from tropical forests. I would thus like to acknowledge the financial support received at various stages over the last 18 years from the following: the National Environmental Research Council, the Overseas Development Administration and The Royal Society of the UK, the US Government (National Institutes of Health) and USAID, WWF-International, WWF-US, WWF-Malaysia and the Wildlife Conservation Society. My thanks also for the use of field facilities run by the Forest Research Institute of Malaysia, the Sabah Foundation and Makerere University.

Over the years many people have assisted the development of research by offering comments on manuscripts, through discussion, or through provision of unpublished data or reports of limited distribution. In this context I would particularly thank the following: C. Fairgreave (Edinburgh), M. Heydon (Fordingbridge), L. Holbech (Copenhagen), P. Howard (Accra), M. Kalyakin (Moscow), J. Karr (Blacksburg, VA), A. Kemp (Pretoria), F. Lambert (Bangkok), R. Lowe (Ibadan), L. Roche (Dublin), T. T. Struhsaker (Durham, NC), S. Sutton (Manchester), J-M. Thiollay (Paris), L. White (Edinburgh) and T. Whitmore (Cambridge). Key figures who have assisted the development of research over the years are D. Chivers (Cambridge), C. Marsh (Vientiane), A. Marshall (Aberdeen) and R. Mittermeier (Washington, DC).

Preface

xxi

I am particularly grateful to the following who have read and commented on sections of this book: N. Brown (Oxford), C. Dranzoa (Kampala), D. Earl (Kingsbridge), T. Johns (Bracknell), A. Plumptre (Budongo Forest Project), D. Pomeroy (Kampala), R. Putman (Oban) and V. Reynolds (Oxford). J. Burley (Oxford) and B. Plumptre (Oxford) kindly read through the entire manuscript prior to submission. I am also grateful to J. Burley for contributing the preface.

The following acknowledgements are made for the inclusion of previously published illustrations:

M. Heydon/Journal of Applied Biology, Blackwell Science Ltd. (Fig. 3.1).

L. Bruijnzeel (Fig. 3.2).

D. Nicholson (Fig. 4.2).

M. Heydon (Fig. 4.4).

Biological Conservation, Elsevier Science Ltd. (Fig. 8.6).

J. Hendrison/Wageningen Agricultural University (Figs. 9.2 and 9.3a).

Finally, my thanks to my sons, Micha and Sasha, without whom the book would have been finished much sooner but without whom life would be less enjoyable. And to my wife, Bettina, for every kind of support.

The completion of the book was assisted by a memorial award from the Oxford Forestry Institute, donated by Mr Daniel Kemp (Timbmet Group Limited) in memory of the late Mr Arthur Morrell. That commercial interests should participate in the publication of work on tropical forest conservation is an encouraging indication of how the two often opposing camps are converging.

Andrew Grieser Johns Brackley, Northamptonshire

EXPLANATORY NOTE

A logged forest is a transient ecosystem moving to regain the structure that existed prior to logging. The most important factors affecting the extent to which it differs from primary forest are the time that has elapsed since the logging event and the degree of damage caused by the logging operation. In the text of this book these data are included for all references to a $logged^{(12:50)}$ forest. This example indicates that data refer to a forest logged 12 years previously at which time 50% of trees were destroyed. Elapsed periods date from the onset of logging rather than its completion.

On occasion, published studies fail to provide these data. The information may sometimes be inferred from other published material from the same location. At other times, an estimate can be made based on other information given (such as timber volumes removed) and comparative damage levels in other locations within the same geographical region. Where data are not verified, they are preceded by a question mark, as in $\log (12:? < 35)$ forest. An absence of any figures, as in $\log (12:?)$ forest, indicates no estimate was considered appropriate.