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Spacecraft interact with the space environment in ways that may affect
the operation of the spacecraft as well as any scientific experiments that
are carried out from the spacecraft platform. In turn, the study of these
interactions provides information on the space environment. Adverse
environmental effects, such as the effect of the radiation belts on
electronics and spacecraft charging from the magnetospheric plasma,
mean that designers need to understand interactive phenomena to be able
to effectively design spacecraft. This has led to the new discipline of
spacecraft—environment interactions. The emphasis in this book is on the
fundamental physics of the interactions.

Spacecraft-Environment Interactions is a valuable introduction to the
subject for all students and researchers interested in the application of
fluid, gas, plasma, and particle dynamics to spacecraft and for spacecraft
system engineers.
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Preface

At the very beginning of the space age, spacecraft designers learned that the ef-
fects of the space environment on a spacecraft’s systems would be vital factors in
spacecraft design and operation. Since those early years, the topic of spacecraft—
environment interactions has developed into a multidisciplinary field involving
engineers and scientists from all over the world. Traditionally, engineers have been
interested in spacecraft design and operational issues, and scientists have concen-
trated on the fundamental physics and chemistry associated with the interactions.
These diverse interests have led to numerous books and conferences. The field
has grown substantially in the past decade with the advent of the Shuttle and the
ability to perform repeatable, in-situ experiments. The authors therefore concluded
that, with the growth of the field and the expanding interest in it, it was timely
to prepare a comprehensive book summarizing the many recent discoveries. In
particular, since the field has evolved in a way that has been driven by mission
and spacecraft requirements rather than as a specific discipline, a book would be a
valuable step in integrating the field intellectually. Such a book would also serve
as an introduction to the discipline for graduate students and professionals. For
specific applications, these individuals could then turn to one of the handbooks or
collections of conference papers referenced throughout the book.

This book is the direct outgrowth of courses that the authors have taught. One
of us (DEH) has for several years taught a class at the Massachusetts Institute
of Technology (MIT) on the subject of spacecraft—environment interactions. This
course, aimed at MIT seniors or first-year graduate students, is intended to serve as
an entry point for students wishing to go on to research in the field of spacecraft—
environment interactions or to learn about the discipline so that they can then
go on to spacecraft system engineering. It is also intended as the final course
for undergraduate or Master’s engineering students interested in the applications
of fluid, gas, and plasma dynamics to spacecraft. The other author (HBG), an
internationally recognized consultant in the field, has developed a short course

XIX
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XX Preface

based on his actual experiences in spacecraft interactions which has been taught
throughout the U.S. Air Force, industry, and internationally. He has participated
in almost all of the recent interplanetary missions and many of the Earth-orbiting
spacecraft (SCATHA, TDRSS, INTELSAT, Galileo, Cassini, HST, Space Station,
and Clementine). These missions have provided numerous practical examples for
the book and illustrate many of the issues that arise in designing spacecraft or
diagnosing failures.

The central idea developed in this book is that every spacecraft has a set of
characteristic interactions (to be defined) with the ambient environment and its self-
induced environment. These interactions affect the basic operation of the spacecraft
as well as any scientific experiments undertaken from the spacecraft platform. The
interactions in turn shed light on the ambient environment. The emphasis in this
book is on the physics of the interactions in order to introduce, the basic concepts.
However, at the end of most of the sections of the book, the reader will be able to
make a simple estimate of the effect of the interaction on the spacecraft. For specific
applications, the reader is referred to other books in the field aimed at professional
engineers and scientists (also see the extensive References provided):

(1) Al’pert, Ya. L., Gurevich, A. V., and Pitaevskii, L. P,, Space Physics with Artificial
Satellites, Consultants Bureau, New York, 1965

(2) Garrett, H. B., and Pike, C., Space Systems and Their Interactions with Earth’s Space
Environment, Progress in Aeronautics and Astronautics, Vol. 71, ATIAA, Washington,
DC, 1980

More recent works are:

(3) DeWitt, R. N., Duston, D. P,, and Hyder, A. K., The Behavior of Systems in the Space
Environment, Kluwer Academic Publishers, 1994

(4) Tribble, A., The Space Environment: Implications for Spacecraft Design, Princeton
University Press, 1995
A book that contains aspects of the interaction issues, but from a systems engineering
viewpoint, is:

(5) Wertz, J. R., and Larsen, W. J., Space Mission Analysis and Design, Kluwer Academic
Publishers, 1991

The chapters in the book are roughly divided between those describing the envi-
ronment and those describing the interactions. The chapters on the space environ-
ment treat both the ambient and the induced environments. The chapters describing
the interactions introduce the interaction, describe the relevant physics and chem-
istry, and then describe qualitatively the practical issues for a spacecraft. Each
chapter has extensive references and a bibliography. However, because this book is
aimed at individuals entering the field, we have generally included only references
that can be found easily in a research library. Occasionally, it is necessary to refer to
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Preface XxXi

conference proceedings when no other source of information is available. However,
given the difficulties in obtaining copies of the older proceedings, this is kept to a
minimum.

The book is arranged as follows.

In Chapter 1, the environments that a spacecraft experiences are described qual-
itatively. The practice of describing the environment in terms of common orbits is
introduced. Next, the notion that the spacecraft is an active player in its environment
is discussed. Finally, the history of spacecraft—environment interactions that have
been identified and their impact on spacecraft operations are briefly reviewed.

In Chapter 2, the concepts of the characteristic lengths, time scales, and critical
velocities for plasma physics, gas dynamics, and radiation physics are introduced.
The relevant equations that describe the interactions are introduced along with the
terminology and approximations necessary to reduce the equations that describe the
physics down to manageable solutions. For example, in the area of plasma physics,
the concept of a Debye length and the comparison of this characteristic length to the
spacecraft body scale are introduced. The physical approximations that are allowed
in the Poisson equation when the Debye length is large or small compared to the
body scale will then be presented. In the area of gas dynamics, the Knudsen number
is introduced and the physical approximations that result when the Knudsen number
is small or large are addressed. For radiation interactions with matter, the idea of
linear energy transfer is introduced, which permits straightforward: estimates of
single-event effects on microelectronic devices.

In Chapter 3, the ambient space environment is described. The ambient envi-
ronment is analyzed in terms of the regions encountered along common space-
craft orbits or of the type of environment (plasma, radiation, neutral particle, or
macroscopic particulates). The intent is to allow the reader to estimate the ambient
environment around a spacecraft along a typical orbit.

In Chapter 4, the physics of the interactions of a neutral gas with a spacecraft are
addressed. Interactions such as drag, sputtering, glow, and contamination are intro-
duced. The modification of the environment by spacecraft operations is discussed.
The physics of each type of neutral interaction are explored using the concepts
developed in Chapter 2.

In Chapter 5, the interactions of the space plasma with a spacecraft are addressed.
Interactions associated with charging, arcing, electromagnetic interference, and
power generation are introduced. The physics of each type of plasma interaction
are developed. The operational spacecraft database built upon these interactions is
explored along with the implications of each interaction for the design and operation
of a typical spacecraft.

In Chapter 6, the interactions of the space radiation environment with spacecraft
materials are addressed. Of the interactions, physical damage due to radiation and
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Xxii Preface

single-event effects are the most important. Recent information from the CRRES
satellite are incorporated.

In Chapter 7, the interactions of macroscopic particulates with a spacecraft are
discussed. Impact of a spacecraft with orbital debris and scattering of electromag-
netic radiation from particulates are introduced. Tactics for designing effective
debris and meteoroid shields are outlined and compared with case studies.

In the concluding chapter, Chapter 8, the state of the field as it existed in 1995
is discussed. In addition, future trends in environmental interactions are addressed.
A critical issue that emerges in this chapter is the inherent cost of carrying out
detailed analyses of the interactions — the means for assessing what interactions are
important for a specific mission is an important consideration for the future.

Finally, a word about units. As far as possible we have used MKS units with the
choice that energies are frequently in electron volts (eV). However, in the field of
environmental interactions, there is still widespread use of CGS units and their use
is unavoidable, especially when using figures from older works. The convention
that we adopt is to give all formulae in MKS units unless we explicitly state that
they are in other units.

Daniel Hastings
Henry Garrett
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