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1. Matrices and determinants

General remarks

Throughout Chapter 1, R will denote a commutative ring
with an identity element. Usually the identity element of R will be
denoted by 1, but 1, will be used if we wish to draw attention tothe
ring in which we are working. This chapter is devoted to review-
ing certain well known basic facts concerning matrices and deter-
minants and organizing them in a way which will be useful later.

1.1 Matrices

By a matrixz with entries in R, or an R-matriz, it is customary
to understand a rectangular array of elements taken from the
ring B. However there are many situations where the order of the
rows and the order of the columns is not important. Again, in the
theory of vector spaces, a linear mapping of one finite dimen-
sional vector space into another can be described by means of a
matrix as soon as each of the two spaces involved has been
provided with a base. Now it can happen that one or possibly
both of the spaces in question has dimension zero. To deal with
such situations we need, for example, the notion of a matrix which
has p rows (say) and zero columns. It is because of considerations
such as these that we make a fresh start and approach the idea of
a matrix from a slightly more general standpoint.

Let M and N be finite sets. By an M x N matriz with entries in
R we shall mean a mapping

A:MxN-—>R (1.1.1)

of the cartesian product M x N into the ring E. Suppose that we
have such a matrix. Let me M and neN. Then (m,n) has an

[1]
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2 Matrices and determinants

image in R which we may denote by a,,,. As an alternative
notation for the matrix A we shall use

A =|a,,| (meM,neN). (1.1.2)

This will be abbreviated to 4 = ||a,,,|| if there is no risk of
confusion.

Given an M x N matrix 4 = ||a,,,[| we can associate with it an
N x M matrix C = |c,,| by requiring that c,,, = a,, for all
me M and ne N. The matrix Cis called the transpose of A and we
shall indicate the connection between the two by writing ¢ = AT.
Evidently if C is the transpose of 4, then 4 is the transpose of C.

Nowlet M, N and @ be finite sets. Suppose that 4 = |a,,,| isan
M x N matrix and B = ||b,,]| is an N x @ matrix. This time we
define an M x @ matrix C = |c,,,| by putting

Cng = 25 Opunbing (1.1.3)
neN

when me M and ¢ € Q. The matrix Cis called the product of 4 and
B and we write C = 4B. Clearly

(AB)T = BTAT. (1.1.4)

Note that the possibility that N may be the empty set is not
excluded. In such a situation the product 4B will be the zero
M x @ matrix, that is to say each of its entries will be the zero
element of E.

Let p and ¢ be positive integers and take M = {1,2,...,p},
N ={1,2,...,q}. For these particular choices of M and N it is
customary to refer to an M x N matrix as a p x ¢ matrix and we
shall observe this custom. Alsoif 4 = [a;,], where 1 < j < pand
1 <k <q,is a pxq matrix we shall, when convenient, exhibit
the relation between A4 and its individual entries by writing

Uy Gy Qg .o Gy
By Qoo gy ... 0

A= 2 %
Qp1 Gpy Qpz  --r Oy

In faet most of our matrices will be presented in this way and it is
only in afew (butimportant) situations where the extra generality
will prove useful.
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Determinants 3

1.2 Determinants

Let M be a finite set. An M x M matrix will be called a square
matriz of type M. The product of two such matrices will again be
a square matrix of type M. Note that this multiplication is
associative but not in general commutative. Furthermore the
identity matriz, that is the matrix

Iy = ][3”,”]] (u, me M), (1.2.1)

where 8,,, is zero if 4 + m and is 1y otherwise, is neutral with
respect to multiplication.

Let 4 = ||a,,| be a square matrix of type M and let 7 be a
permutation of the set M. The determinant of A, which we denote
by det (4) or | 4], is defined by

det (4) = Xsgn (m) ( 1T @,n(0)- (1.2.2)
T peM
Here sgn (7) = + 1 if 7 is an even permutation and sgn (1) = — 1

if it is an odd permutation, i.e. sgn (7r) is the signature or parity of
7. In this connection it is convenient to have a convention to
cover the case where M is the empty set, that is where we have
to do with a square matrix with zero rows and zero columns. In
fact we shall define the determinant in this case to be the identity
element of R. Thus symbolically

det (| -]) = 15 (1.2.3)

It has already been remarked that the square matrices of type
M form a system which is closed under multiplication and which
has the matrix I, = [|6,,,] asidentity element. The system is also
closed with respect to the process of replacing a matrix by its
transpose. This structure has a familiar connection with the
theory of determinants. Thus if 4, B are square matrices of

type M, then
det (4B) = det (4)det (B), (1.2.4)
det (Iy) = 15, (1.2.5)
and det (AT) = det (4). (1.2.6)
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4 Matrices and determinants

An M x M matrix 4 is called invertible if there exists an M x M
matrix C such that AC = I, = CA. (Of course if C exists, then
it is unique.) C is called the inverse of 4 and it is denoted by A2
It is well known that 4 is invertible if and only if det (4) is a unit
of the ring R. Invertible matrices are also known as unimodular
madtrices.

In the three exercises which follow p and g denote positive
integers.

ExERCISE 1.7 Let B be a p X p matrixz (with entries in R) and
€15 Cy, ---, €, elements of K such that (cy, ¢, ..., ¢,) B = 0. Show that
c;det (B) =0 fori=1,2,...,p.

ExERCISE 2. Supposethat AB = A, where A = |a;,|| isapxq
and B = ||by,,|| @ g x ¢ matriz with entries in R. Let 9 be the ideal
generated by the a;, and B the ideal generated by the by,,. Show that
there exists B such that (1-£)WA = 0.

We recall that an element e, of R, is called an idempotent if
e? = e. Both the zero element and the identity element are
idempotents. An idempotent which is different from these is
called a non-trivial idempotent. An integral domain, for example,
has no non-trivial idempotents.

ExERCISE 3. Suppose that AQA = A, where A is a pxq
matriz and Q a qx p matriz. Let A be the ideal generated by the
entries in A. Show that there exists an idempotent o such that
U = Ra. (Hence (1—a) ¥ = 0 and if R has no non-trivial idem-
potents, then either % = 0or A = R.)

1.3 The exterior powers of a matrix

Throughout section (1.3) the letters p, ¢ and ¢ will denote
positive integers. Suppose that v > 0 is an integer. We shall
denote by S? the set of all sequences J = {j,J, ..-,J,}, Where

1 <4, <jp < ... <j, < p. Evidently 8? contains (f ) members.

Thus S? is empty when v > p and is non-empty in all other cases.
In particular it contains a single member when v = 0.

T Solutions to the exercises will be found at the end of the chapter.
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Exterior powers of a matrix 5

Let 4 = |a;;]| be a p x ¢ matrix with entries in R. Suppose, for
the moment, that 1 <v < min(p,q). If now J = {j;, 4, .--,5,}
belongs to 8 and K = {k;, k,, ..., k,} to S?, then we put

iy iy 0 Yk
Agh = Bk G e (13.1)
ajv kl ajv k2 e ajy kv

so that 4 Pk is a typical v x v minor of 4. Let us keep » fixed. Then
the A {, where J € 82 and K €82, may be regarded as the entries
in an 8% x 8 matrix A®, This matrix 4®is called the vth exterior
power of A. At this point we relax the restriction that was placed
on v and regard A® as being defined for all v > 0. Note that, by
(1.2.3), A®@is the 1 x 1 matrix |15[ and that A® = 4. Note also
that if C is the transpose of A, then C® is the transpose of A®.
Again, the exterior powers of an identity mairix are themselves
tdentity matrices. In this context a matrix with zero rows and
zero columns counts as an identity matrix.t

Let A = ||a;;] be a p x ¢ matrix and B = |b;,,| a ¢ x ¢ matrix.
Put C = 4B, say C = |c;,|, and suppose for the moment that
1 <v < min(p,t). If now J = {4;,7,,...,5,} belongs to S? and
M = {my, m,, ...,m} to St, then

Cjymy Ciymy - Ciymy
0}1;‘)! - Cjzml Cjzmz ces Cjzmv
Ciymy  Ciomy -+ Ciymy
E ha “ml Z 1ﬂbﬂmz E @iy ?'mv
Zaz“ amy ﬂz 2ﬁbﬂm2 2 (%% Ymv
= . 3
20, b‘m1 2 a;, ﬂb bmy e Xa;, y bymv
@ B Y
whence o g - G,
o a; a; e O
Cir= X bamlbﬁmg...bmv :2“ fzﬂ ’:27 . (1.8.2)
P : : :
Cj,q Qi oo G4y
t Cf. (1.2.3)
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6 Matrices and determinants

Here «,f, ...,y range freely between 1 and ¢. However, unless
they are distinet, the determinant in (1.3.2) vanishes. Let
K ={k,k,,...,k,} belong to 8. If {«, f, ..., v} is a permutation
of {ky, ks, ..., k,}, then

Ao g - By
a; a; . a,;
Ta  d I = )
:z ;2/3 ?Y - eaﬂ...'yAJvK’
Qo Gjp --- aM,

where €,, ., has the value +1 or —1 according as {a, 8, ..., y} is
an even or an odd permutation of {k;, ks, ..., k,}. It follows that
the contribution to the sum on the right hand side of (1.3.2) from
all the permutations of {k;, ks, ..., k,} is A ¥k B&y. Accordingly

Cpily = S ATk By (1.3.3)
K
and we have proved

TrEOREM 1. Let A be a p x ¢ matriz and B a g x t matrixz. Then
(AB)®) = A®B® for every v > 0.

Note that, because of our conventions, we can allow v to be any
non-negative integer.

We recall that B is called a non-trivial ring if its identity
element is not zero.

EXERCISE 4. Suppose that the ring R is non-trivial. Let A be
a p x g matrie and B a g x p matriz such that AB and BA are both
of them identity matrices. Show that p = q. (Thus A and B are
unimodular matrices and each is the inverse of the other.)

1.4 Determinantal ideals
Let A4 be a p x ¢ matrix and B a ¢ x ¢ matrix, where p, g, ¢

are positive integers. If now v > 0 is an integer, denote by U,(4)
the ideal generated by the entries in A®. Thus U, (4) is the ideal
generated by all the v x v minors of 4.

DeriNITION. The ideals W (4), wherev = 0,1,2, ..., are called
the ‘ determinantal ideals’ of A.

Since A® = | 1], it follows that o(4) = R. Of course A, (4)
is the ideal generated by the elements of 4. Again

A(4)=0 for v > min(p,q) (1.4.1)
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Determinantal ideals 7
and R=%4) 2% (4) 2 U(4) 2 Uy(4) 2 .... (1.4.2)
Also, because (4B)® = A¥B® by Theorem 1, we have

U(4B) = U (4) nAL(B) (1.4.3)

and this extends to a product of any finite number of matrices.

THEOREM 2. Let A and A’ be p x g matrices and suppose that
A'=UAV, A=U'A"V’', where U,U’ are pxp matrices and
V, V' are q x g matrices. Then U ,(4) = A, (4’) for all v > 0.

Proof. Since A’ = UAV,wehave A (4") = %A,(4) by (1.4.8) and
the opposite inclusion holds similarly.

DErFINITION. The p x ¢ matriz A’ is said to be ‘equivalent’ to
the p x q matriz A if there exist unimodular matrices U, V such
that A’ = UAYV.

This relation is reflexive, symmetrie, and transitive. Indeed if
A" = UAV,where U, V are unimodular and therefore invertible,
then 4 = U-14'V-1. We can therefore apply Theorem 2 and so
obtain

THEOREM 3. If A and A’ are equivalent p x ¢ matrices, then
A (4) = A, (A4") for all v > 0.

It is & classical result that if R is an integral domain with the
property that every ideal can be generated by a single element,
then the converse of Theorem 3 holds. Thus for such an integral
domain two p x ¢ matrices 4 and A’ are equivalent if and only if
A, (A4) = A (A4A") for all v > 0. As we shall not be making use of this
result we refer the interested reader to the literature.t

We recall that by elementary row and column operations on A it is
customary to mean the following:

(1) multiplication of the elements of any row or column of 4 by
one and the same unit;

(2) interchanging any two rows or columns of 4;

(3) adding to any row (column) of 4 a multiple, by an element
of R, of a different row (column).

T See (6) in the list of references at the end. The section dealing with these
matters is Chapter 7, §4, no. 5.
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8 Matrices and determainants

If we take any one of these operations, then the same effect can be
produced by multiplying 4 by a suitable unimodular matrix.
For example suppose that 1 < 4,7 < pand ¢ & j. Denote by U the
matrix produced by taking the identity matrix of order p and
putting an element a, where a € R, in the (7,7)th position. Then
det (U) = 1, so U is unimodular, and UA is the matrix one
obtains from 4 by adding « times the jth row to the i¢th row.
Accordingly we have

THEEOREM 4. Let the matriz A’ be obtained from A by means of
elementary row and column operations. Then A and A’ are
equivalent and hence they have the same determinantal ideals.

We now give a partial result concerning determinantal
ideals.

LeMMA 1.1 Suppose that AQA = A, where A is a p x ¢ matrix
and Q a g x p matriz. Then for each v > 0 the determinantal ideal
A (A) is generated by an idempotent. Hence if R has no non-trivial
idempotents, then either A, (A) = 0 or A (4) = R.

Proof. We may confine our attention to the case where
1 < v < min (p,q). By Theorem 1, A®Q®A® = A®) and by
definition 9 (4) is the ideal generated by the entries in 4®). The
desired result therefore follows from Exercise 3.

1.5 Some useful formulae

Throughout section (1.5) we shall be concerned with a p x ¢
matrix A = [a;;]|, where p, q are positive integers. Suppose that
0 <z <min(p—1,q) and let M = {m,,m,,...,m,,,} belong to
82, and K ={k, k,,...,k,} to SZ, where the notation is as
explained in section (1.3). We now define a row vector z;,x of

length p by
0 if j¢M,

(xMK)j = :(_ 1)“+1A%)\j,K if '9 = m,. (151)

+ The converse of the first assertion of the lemma is also true. Cf. Chapter 4
Theorem 18.
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Here by M\m, we mean M with the term m, removed. Since zp, %
is a row vector of length p we can form ;x4 and this will be a
row vector of length ¢. In fact for 1 < k < ¢ we have

O 1 - o Oy,
am k am k sve a k
—_ 2 2 #1 me Kp
@yurd), = 2 : . (1.5.2)
Tnpale Py By LIy

as is readily verified by expanding the determinant by means of
its first column.

There is a natural companion to this result. To describe it
suppose that 0 < v < min(p,¢—1). Further suppose that
J = {j1.Ja ---»,} belongs to S? and N = {n,, 7y, ...,7,,,} to 8%, ;.
We can now define a column vector y, of length ¢ by

0 if keN,

This secures that Ay, is a column vector of length p and we have

Xjn, Bjng oo Fjnyyy
a.: a; A 2
_ Jiny J1 7 FARES
(Aysn); = : . . . (1.5.4)
Gjyny Yyng o+ Wymyyy

On this occasion the relation can be checked by expanding the
determinant on the right hand side of (1.5.4) by means of its first
TowW.

Our next result is somewhat more complicated in character
and in order to present it we shall require some additional nota-
tion. Let ¢ > 0 be an integer and let H = {h,, h,, ..., h,}. Thisis to
be a sequence of integers between 1 and p, but on this occasion
we do not postulate that 2, h,, ...,k be distinet nor do we
insist that they should form an increasing sequence. Suppose next
that 1 <z < p. We put

0 if H contains a repetition or u¢ H,
(—1)* if H contains no repetitions and p = h,.
(1.5.5)

o(u, 1) = |
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10 Matrices and determinants

Again let L = {l,,1,, ...,1;} also be a sequence of integers but this
time between 1 and ¢, where once more repetitions are allowed.
For 1 < v < ¢ we define w(v, L) by means of a formula analogous
to (1.5.5).

After these preliminaries put

Uty Oty oo Imgy
ah l ah l see ah l
—_— 24 24
App = : e : (1.5.6)
R

andfor 1 <A< p, 1 <l<gset
RH = {h,ky by, ... By and 1L ={1,1;,1,,...,0}. (1.5.7)
Using these we can define a p x ¢ matrix @z, by

OmL)u = Brm,iz- (1.5.8)

We can also define a ¢ x p matrix Q as follows: if either H or L
contains a repetition, then Q; = 0; on the other hand if neither
H nor L contains a repetition, then the entriesin Qg aregiven by

Q1) = 0 ifeither u¢H or vél,
(Qaz)y = o(u, HY o, L) Ay, 1, if peH and velL.

The significance of these various definitions is revealed by
THEREOREM 5. Let the notation be as above. Then

Consequently if all the (i + 1) x (t+ 1) minors of 4 are zero, that is if
Upir(4) =0, then Ay A = AQg A.

Proof. We may suppose that neither H nor L contains a repeti-

tion. Now
ah, ahll see ahzt
py Qg e Opgy
1 141 14
(®HL)M = : : :
ahtl a/hth ese ah‘h
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