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FIRST PART
PRINCIPLES

CHAPTER I
INTRODUCTORY REMARKS

1. In the most varied fields of practical and scientific experi-
ence, cases occur where certain observations or trials may be
repeated a large number of times under similar circumstances.
Our attention is then directed to a certain quantity, which may
assume different numerical values at successive observations.
In many cases each observation yields not only one, but a certain
number of quantities, say &, so that generally we may say that
the result of each observation is a definite point X in a space of
k dimensions (k> 1), while the result of the whole series of obser-
vations is a sequence of points: X;, X, ....

Thus if we make a series of throws with a given number of
dice, we may observe the sum of the points obtained at each
throw. We are then concerned with a variable quantity, which
may assume every integral value between m and 6m (both limits
inclusive), where m is the number of dice. On the other hand, in a
series of measurements of the state of some physical system, or
of the size of certain organs in a number of individuals belonging
to the same biological species, each observation furnishes a
certain number of numerical values, i.e. & definite point X in a
space R of a fixed number of dimensions.

In certain cases, the observed characteristic is only indirectly
expressed as a number. Thus if, in a mortality investigation, we
observe during one year a large number of persons, we may at
each observation (i.e. for each person) note the number of deaths
which take place during the year, so that in this case the observed
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2 INTRODUCTORY REMARKS

quantity assumes the value 0 or 1 according as the corresponding
person is alive at the end of the year or not.

In a given class of observations, let R denote the set of points
which are a prior: possible positions of our variable point X, and
let S be a sub-set of R. Further, let a series of n observations be
made, and count the number v of those observations, where the
following event takes place: the point X determined by the observa-
tion belongs to S. Then the ratio v/n is called the frequency of that
event or, as we may shortly put it, the frequency of the relation
(or event) Xc 8. Obviously any such frequency always lies
between 0 and 1, both limits inclusive. If 8=8; +8,, where S;
and 8, have no common point, and if v,/n and vy/n are the
frequencies corresponding to §; and S, we obviously have
v=w,+ v, and thus

(1) vin=vi/n+ vy/n.

When we are dealing with such frequencies, a certain peculiar
kind of regularity very often presents itself. This regularity may
be roughly described by saying that, for any given sub-set S,
the frequency of the relation (or event) X ¢ S tends to become more
or less constant as n increases. In certain cases, such as e.g. cases
of biological measurements, our observations may be regarded
as samples from a very large or even infinite population, so that
for indefinitely increasing n the frequency would ultimately
reach an ideal value, characteristic of the total population.

It is thus suggested that in cases where the above-mentioned
type of regularity appears, we should try to introduce a number
P (8) to represent such an ideal value of the frequency v/n corre-
sponding to the sub-set §. The number P (8) is then called the
probability of the sub-set S, or of the event X ¢ 8. It follows from
(1) that we should obviously choose P (§) such that

(2) P (8,4 8,)=P (81)+ P (8)
for any two sub-sets S, and S, of R which have no common point.

Further, it is obvious that we should always have P (8)=0 and
that for the particular set §= R we should have P (R)=1.
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INTRODUCTORY REMARKS 3

The investigation of set functions of the type P (S) and their
mutual relations is the object of the Mathematical Theory of
Probability. This theory should be considered as a branch of
Pure Mathematics, founded on an axiomatic basis, in the same
sense as Geometry or Theoretical Mechanics.! Once the funda-
mental conceptions have been introduced and the axioms have
been laid down (and in this procedure we are, of course, guided
by empirical considerations), the whole body of the theory should
be constructed by purely mathematical deductions from the
axioms. The practical value of the theory will then have to be
tested by experience, just in the same way as a theorem in
euclidean geometry, which is intrinsically a purely mathematical
proposition, obtains a practical value because experience shows
that euclidean geometry really conforms with sufficient accuracy
to a large group of empirical facts.

We finally point out that, in order to build a perfectly general
mathematical theory of the phenomena encountered in con-
nection with experimental situations of the type considered here,
it would be necessary to remove the restriction that R should be
a space of a finite number of dimensions. We should then have to
regard X as an observed point in some space R of a more general
nature. For the purposes of this book we shall, however, restrict
ourselves to the case when R has a finite—although in some cases
very large—number of dimensions.

2. The axiomatic basis of a theory may, of course, always be
constructed in many different ways, and it is well known that,
with respect to the foundations of the Theory of Probability,
there has been a great diversity of opinions.

The type of statistical regularity indicated above was first
observed in connection with ordinary games of, chance with
cards, dice, etc., and this gave occasion to the origin and early
development of the theory.? In every game of this character, all

! This view seems to have been first explicitly expressed by v. Mises [2].
* Cf. Todhunter [1].

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521604869
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521604869 - Random Variables and Probability Distributions
Harald Cramer

Excerpt

More information

4 INTRODUCTORY REMARKS

the results that are a priori possible may be arranged in a finite
number of cases which are supposed to be perfectly symmetrical.
This led to the famous principle of equally possible cases which,
after having been more or less tacitly assumed by earlier writers,
was explicitly framed by Laplace[1], as the fundamental prin-
ciple of the whole theory.

During the subsequent discussion of this principle, it has been
maintained by various authors that the validity of the principle
of equally possible cases is necessarily restricted to the field of
games of chance. Attempts have been made' to establish the
theory on an essentially different basis, the probabilities being
directly defined as ideal values of statistical frequencies. The
most successful attempt on this line is due to v. Mises [2, 3], who
endeavours to reach in this way an axiomatic foundation of the
theory in the modern sense.

The fundamental conception of the v. Mises theory is that of a
“Kollektiv”’, by which is meant an unlimited sequence K of
similar observations, each furnishing a definite point belonging
to an a priori given space R of a finite number of dimensions.
The first axiom of v. Mises then postulates the existence of the
limit

(3) lim v/n=P(S)

N—> 0
for every simple sub-set S ¢ R, while the second axiom requires
that the analogous limit should still exist and have the same
value P (8S) for every sub-sequence K’ that can be formed from
K according to a rule such that it can always be decided whether
the nth observation of K should belong to K’ or not, without
knowing the result of this particular observation. 1t does, however,
seem difficult to give a precise mathematical meaning to the
condition printed in italics, and the attempts to express the
second axiom in a more rigorous way do not, so far, seem to have
reached satisfactory and easily applicable results. Though fully
recognizing the value of a system of axioms based on the pro-

1 For the history of these attempts, cf. Keynes [1], chaps. viI-viir.
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INTRODUCTORY REMARKS 5

perties of statistical frequencies, I think that these difficulties
must be considered sufficiently grave to justify, at least for the
time being, the choice of a different system.

The underlying idea of the system that will be adopted here
may be roughly described in the following simple way: The
probability of an event is a definite number assoctated with that event ;
and our axioms have to express the fundamental rules for operations
with such numbers.

Following Kolmogoroff [4], we take as our starting-point the
observation made above (cf. (2)) that the probability P (S) may
be regarded as an additive function of the set S. We shall, in fact,
content ourselves by postulating mainly the existence of a
funetion of this type, defined for a certain family of sets S in the
k-dimensional space B, to which our variable point X isrestricted.
and such that P(S) denotes the probability of the relation
Xc8.

Thus the question of the validity of the relation (3) will not
at all enter into the mathematical theory. For the empirical
verification of the theory it will, on the other hand, become a
matter of fundamental importance to know if, in a given case,
(3) is satisfied with a practically sufficient approximation.
Questions of verification and application fall, however, outside
the scope of the present work, which will be exclusively concerned
with the development of the purely mathematical part of the
subject.

3. Before giving the explicit statement of our axioms, it will
be convenient to discuss here a few preliminary questions related
to the theory of point sets and (generalized) Stieltjes integrals in
spaces of a finite number of dimensions.!

In the first place, we must define the family F of sets S, for
which we shall want our additive set function P (S) to be given.
If X=(£,,...,£,) belongs to the k-dimensional euclidean space

1 Reference may be made to the treatises by Hobson [1], Lebesgue [1] and de la
Vallée Poussin [1].
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6 INTRODUCTORY REMARKS

R,, the family F should obviously contain every k-dimensional
interval J defined by inequalities of the form
at<€i§bi (i=1,2,...,k),
as we may always want to know the probability of the relation
X ¢ J. It is also obvious that F should contain every set § con-
structed by performing on intervals./ a finite number of additions,
subtractions and multiplications. It is even natural to require
that it should be possible to perform these operations an infinite
number of times without ever arriving at a set S such that the
value of P (S) is not defined. Accordingly, we shall assume that
P (8) is defined for all Borel sets' S of R,.
Every set which can be constructed from intervals J by applying
a finite or infinite number of times the three elementary operations
is a Borel set. If 8, S,, ... are Borel sets in R,, this also holds true
for the two sets
limsup S, =lm (S, +S,.1+...),
lim inf8, =lim (S, S, ,;...)-
If lim sup 8, and lim inf S, are identical, we put
lim S, =lim sup 8, =lim inf S,,,
and thus lim S, is also a Borel set. In particular, the sum and
product of an infinite sequence of Borel sets are always Borel sets.
If no two of the sets S, have a common point, it follows from
the additive property (2) that

P(Si+...+48,)=P(S)+...+ P(S,)
for every finite n. Since the limit S; + S, + ... always exists and
is a Borel set, it is natural to require that this relation should
hold even as n—00, so that we should have
P(S;+8,+...)=P(S)+P(S)+....
A set function with this property will be called completely
additive, and it will be assumed that the function P (S) is of
this type.
1 Cf. Hobson [1], 1, p. 179; Lebesgue [1], p. 117; de la Vallée Poussin [1], p. 33.
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INTRODUCTORY REMARKS 7

Consider now a real-valued point function g(X), defined for
all points X = (£;,...,&,) in B,. ¢g(X) is said to be measurable B!
if, for all real a and b, the set of points X such that a<g(X)<b
is a Borel set. Similarly, a vector function Y =f(X), where
Y=(#,,...,m) belongs to a certain f-dimensional space N,, is
measurable B if every component #;, regarded as a function
of X, is measurable B. If & denotes any Borel set in 9y, and if S
is the set of all points X in R, such that f(X) ¢ &, then 8§ is also
a Borel set. (If f(X) never assumes a value belonging to &,
8 is of course the empty set.) If f,, f,, ... are measurable B, so are
Sitfe, fufs, f11, limsupf,, liminff, and, in the case of conver-
gence, limf,,.

All sets of points with which we shall have to deal in the sequel are
Borel sets, while all point functions are measurable B. Generally
this will not be explicitly mentioned, and should then always be
tacitly understood.

A Lebesgue-Stieltjes integral with respect to the completely
additive set function P (S) is, for every bounded and non-
negative ¢g(X) and for every set S, uniquely defined by the

postulates

(A) f gdP= gdP+f gdP,

$1+8; S 8.

§; and 8, having no common point, and

(®) [ roar=[ nap+[ s,

s s 5
(©) f gdP=0,
s
(D) f 1.dP=P(S).
s

If g is not bounded, we put g, =min (g, M) and deﬁnef gdP
s
as the limit of f g1 dP as M—co. If the limit is finite, g is said
s

1 Cf. Hobson [1], 1, p. 563; de la Vallée Poussin [1], p. 34.

B
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8 INTRODUCTORY REMARKS

to be integrable over S with respect to P (S). The extension to
functions g which are not of constant sign is performed by putting

2( gaP=[ (ol+oar—] (o|-g)aP.

For any g such that |g| < C throughout the set S, we then have
the mean value theorem

j gdP
5

Let g,, 95, ... be a sequence of functions such that for all points
of 8 we have | g, | <g, where g is integrable. Then if limg,, exists
for every point of 8, except possibly for a certain set of points
8, ¢ 8 such that P (S;) =0, we have

limJ g,4P= f limg,dP.
5 5

It follows that the theorems on continuity, differentiation and
jintegration with respect to a parameter, etc. which are known
from elementary integration theory extend themselves im-

<CP(S).

mediately to integrals of the type f g(X,t)dP, where t is a
s

parameter.
The ordinary theorems on repeated integrals! are also easily

extended to integrals of the type here considered. In particular
we have the following result which will be used in Chapter 111.
Let P (S) be defined in a two-dimensional space R, and such
that for every two-dimensional interval J (a; <£; £b;, 0, <&, <b,)
we have P(J)=P,(}) B (%),

where P, (S) and P, (S) are completely additive set functions in
R, while J; denotes the one-dimensional interval a,<£;<b,.
Then if the function g, (£;)g,(£,) is integrable over R, with
respect to P (S), we have

f g2 (£ 95 (£) AP = f g1 (£)dP, f 02 (£) AP
R, R, R

1 .f. Hobson [1], 1, p. 626; de la Vallée Poussin [1], p. 50.
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CHAPTER II
AXIOMS AND PRELIMINARY THEOREMS

1. We now proceed to the explicit statement of our axioms.!
In accordance with the preceding chapter, we denote by R,
a k-dimensional euclidean space with the variable point
X=(4,...,&), and we consider the family of all Borel sets S
in R,

Axiom 1. To every S corresponds a non-negative number
P (8), which is called the probability of the relation (or event) X c S.

Axiom 2. We have P(R;)=1.
Axiom 3. P(8)isacompletely additive set function, i.e. we have
P(S;+8+...)=P(S)+P(S)+ ...,
where 8y, S, ... are Borel sets, no two of which have a common point.

The variable point X is then called a random wvariable (or
random point, random vector). The set function P (8) is called
the probability function of X, and is said to define the probability
distribution in R, which is attached to the variable X. It is often
convenient to use a concrete interpretation of a probability dis-
tribution as a distribution of mass of the total amount 1 over R,
the quantity of mass allotted to any Borel set S being equal

to P (8).
It follows immediately from the axioms that we always have
0=P(8S)=1,
and P(8S)y+ P(8*)=1,

where S and §* are complementary sets. Further, if S and S,
are two sets such that §,558,, we have S, =8, + (8, — ;) and thus

(4) P(8)z P(S,).

1 The fact that we restrict ourselves here to Borel sets in R, permits some formal
simplification of the system of axioms given by Kolmogoroff [4], and of the im-
mediate conclusions drawn from the axioms.
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10 AXIOMS AND PRELIMINARY THEOREMS

Theorem 1. For any sequence of Borel sets 8y, Sy, ... 1n By,

we have P (lim sup S’n) = lim sup P (Sn)7

P (lim inf 8,) <lim inf P (S,).
Hence, if lim S,, exists, so does lim P (8S,,), and we have
(5) P (lim 8,)=lim P (S,).
In order to prove this theorem, we shall first show that (5)

holds for any monotone sequence {S,}. If {S,} is an increasing
sequence, we may in fact write

Hm S, =8+ (S, — S+ (85— 8) + ...,
and thus obtain from Axiom 3
P(lim 8,)=P(S))+ P (S,— 8))+ P (S;—8,) + ...
=P (8)+ (P (S)— P (8) + (P (S5) = P(Sy) + -
=lim P(8,).
For a decreasing sequence {8, }, the same thing is shown by con-
sidering the increasing sequence formed by the complementary
sets Sk
For any sequence {S,}, whether monotone or not, we have
(cf. 1, §3) limsup S, =lim (S, + 8,41+ ...). Now, S, +8,,;+... 18
obviously the general element of a decreasing sequence, so that

(6) P(limsup S,)=lm P(S,+8,.++...).
For every r=0, 1, ..., we have S, +8,,,+...28,,,, and thus
by (4) P(Sn+S7L+1+“')zP(Sn+r)’

P(S,+8,.,+...)zlimsup P (8,).
We thus obtain from (6)
P (limsup 8,) = limsup P(8,,).
Hence the inequality for P (lim inf §,)) is obtained by considering
the sequence {S}} of complementary sets and using the identity
liminf S, = (lim sup §%)*. Thus Theorem 1 is proved.
In the particular case when every point X of R, belongs at

most to a finite number of the sets §,, lim §, is the empty set,
and it follows that we have lim P (S,)=0.
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