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PREFACE

HEN I was asked to write this tract I was given the privilege

of making any possible use of the tract by my old friend
J. E. Wright, which was published under the same title about
twenty years ago. In these twenty years, however, so much has
happened to change our view of the subject that I am sure Wright
would have written an entirely new tract if he had lived—and that
is what I have done.

It is not merely that many new discoveries have been made, but
since the advent of Relativity the subject has been so much studied
and expounded with a view to its applications that it now seems
possible to say that certain methods are definitely accepted as of
primary interest and certain others left to one side as of less con-
sequence to science as a whole. I have tried to set forth the parts
of the subject which are important for the applications as fully as
the space available would permit and therefore have been forced to
leave out several of the questions which Wright included. I have
also tried to make the tract elementary in the sense that fundamental
definitions are carefully formulated. This has necessarily made the
preliminary part of the book long as compared with the rest, and
has crowded out material on the applications of the subject which
I wrote with more pleasure than some of the pages actually included.
However, there are 80 many books on Relativity, and doubtless will
be so many others applying differential invariant theory to Electro-
magnetic theory, Dynamics, and Quantum theory that one may
perhaps be forgiven for not trying to include the applications in
these few pages.

Differential geometry has also been crowded out. It seemed
important to illustrate the general ideas by the simple case from
which they are generalized, namely, elementary geometry. This left
no room for higher differential geometry, not even for a discussion
of infinitesimal parallelism. But the geometrical point of view is
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vi PREFACE

accessible in several recent books* with which this one is not intended
to compete. Its purpose is rather to assist the students of differential
geometry and mathematical physics by setting forth the underlying
differential invariant theory. So it is not entirely by accident that
the book ends with a formula which can be of interest only to a
reader who intends to go forward to the problems in which it is used.

My thanks are due to several of my colleagues and students at
Princeton who have made helpful suggestions either when reading
the manuseript or during my lectures on the subject. I am par-
ticularly indebted to Dr J. M. Thomas and Mr M. S. Knebelman
who have read the whole of the manuscript, and the proof sheets
as well.

* On differential geometry we may mention D. J. Struik, Mehrdimensionale
Differentialgeometrie, Berlin, 1922; J. A. Schouten, Der Ricei-Kalkiil, Berlin, 1924 ;
E. Cartan, La Géoméirie des espaces de Riemann, Paris, 1925; T. Levi-Civita, Lezioni
di Calcolo Differenziale assoluto, Rome, 1925 (English translation, London, 1927);
L. P. Eisenhart, Riemannian Geomelry, Princeton, 1926: on differential invariants
in general, R. Weitzenbock, Invariantentheorie, Groningen, 1923.

OSWALD VEBLEN

PRINCETON, N. J.
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