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IDEAL THEORY

PRELIMINARIES

The starting point of the theory which is developed in the
following pages, is the definition of the algebraic system which
is known as a ring. Roughly speaking, a ring is a set of objects
which can be added and multiplied, and which may be manipu-
lated, in so far as these two operations are concerned, more or less
in the natural manner. We shall now define precisely what it is
that the algebraists call a ring, and then we shall deduce those
elementary consequences of the definition, which are used con-
stantly in the handling of formulae.

Suppose that we have a set R of objeets, which we shall refer
to as the elements of R, and which we shall denote by the letters
a, b, ¢, and so on. Suppose, further, that with each ordered pair
a, b of elements of R, there are associated two elements of R,
which are called the sum and the product of @ and b, and which
are denoted by a + b and by ab respectively. The set R (together
with the operations of addition and multiplication) is said to
form a ring, whenever the following six conditions are satisfied:

(1) a+b=>b+a for all a and b.

(2) (@+b)+c=a+ (b+c) foralla, b, and c.

(3) There is an element © such that a + @ =a for all a.

(4) For each element a there exists at least one element x such

that a+x=0.
(5) a(be)=(ab)c for all a, b, and c.
(6) a(b+c)y=ab+acand (b+c)a=ba+ca for all a, b, and c.
In (1), the expression ‘for all @ and b’ means, of course, ‘for all

»airs of elements ¢ and b belonging to R’, and similar inter-
pretations are intended in (2}, (3), (5) and (6). For brevity, instead

of writing ‘a belongs to R’ we shall often write a € K, and, more
generally, if S is a subset of B we shall write ae S if we wish

NIT
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2 IDEAL THEORY

to indicate that a belongs to §. We shall now deduce those
elementary consequences of the definition of a ring, to which a
reference has already been made.
(7) There is only one element © with the property thata + ®@=a
forall a.

For assume that a + ® =a + @' =a for all a. Then, on the one
hand, ©'+ ®=0’; and, on the other hand, using (1), we have
®'+0=0+0" which is equal to ©® by hypothesis. Thus
@' =0’ + ©=0. The element O is called the zero element of thering.

(8) If a and b are given the equation a + x =b has one and only
one solution.

For by (4) there exists y € B such that a + y = ®, and then, since
a+(y+b)=(a+y)+b=0+b=b+0=b,

it follows that y + b is one solution. Again, supposing a + =5, we
have

y+b=y+(@+2)=(y+a)+z=(a+y)+x=0+2x=2+0=r,

which shows that y + b is the only solution.

As a particular case we notice that the equation a + =@ has
a unique solution. This solution will be denoted by —a. From
O+ O=0weseethat ~0 =0, and from (—a)+ae=a+(—a)=0
we see that —(—a)=a. Again, by (1), (2) and (3), we have
(@ +b)+(—a)=b, and if we now add —b to both sides of this
equation we find that —(a+b)=(—a)+{—b).

(9) Qa=a® =0 forall a.

In fact, @a={0@+0)a=0a+0Ba and since we also have
Oa+ 0 =Oa it follows, by (8), that @a=0. We can prove that
a® =0 in a similar way.

(10) —{(ab)=(—a)b=a(-0b), and (—a)(—b)=ab.

To see this we note that

O=0b=(a+(~a))b=ab+(—a)d
which shows that — (ab)=(—a)b, and the proof that
—(ab)=a(-b)
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PRELIMINARIES 3

is similar. If we now take the negatives of both sides of the
equation — (ab)=(—a)b we obtain

ab=—(—a)b=(—a)(-0b).

It is usually convenient to write a —b in place of @ + (—5). It
follows immediately that — (@ —b)=b—a; that c(a — b) = ca — cb;
and that (@ —b)c=ac—be.

To the above observations, we add the remark that from (2)
and (5) it follows, in the usual way, that we can use symbols such
as a;+a,+...+a, and a,a,...a,, that is, sums and products of
more than two terms, without ambiguity.

Commutative rings. The ring R is called commutative if ab=ba
for all @ and b. In such a ring, permuting the terms of a product
@,a,...a, does not change its value. Roughly speaking, in a
commutative ring all the usual algebraic manipulations are
permissible, except those which involve cancellation or division.
The rings, which will concern us, are such that, usually, we
cannot conclude from ab=ac and a4 © that b=c; and it will
hardly ever be true that a +© implies that the equation az =5
has a solution.

Rings with a unit element. A ring R, commutative or not, is said
to have an element e as a unit element if e+=0, and if ea =ae=a
for all a. A ring has at most one unit element, for if

ea=ge=ea=ae =a

for all a, then ee’ is equal both to e and to ¢/, hence e and e’ are the
same.

It is extremely easy to give a large number of different
examples of a ring, but we shall not stop to try and indicate the
scope of this concept. However, it is a good idea for the reader
to keep a definite example in mind, and for this the polynomials
in n variables, with complex numbers as coefficients, will serve
excellently, Such polynomials are easily seen to form a ring, and
it was the study of this ring (in connexion with algebraic
geometry) which gave rise to a large part of contemporary
ideal theory.
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CHAPTER I

THE PRIMARY DECOMPOSITION

1-1. A convention. Now that we have given a formal
definition of a ring, we can begin the systematic development of
our subject. The rings that we shall consider will all be com-
mutative, and they will all have a unit element. It is therefore
convenient to use the word ‘ring’ in a more restricted sense than
is customary in modern algebra, and for this reason we lay down
the following convention: From now on ‘ring’ will always mean
a commutative ring with a unit element. The zero element and the
unit element of a ring B will be denoted by 0 and 1 respectively,
or, if we are concerned with several rings at the same time, by
0p and 1.

1:2. Ideals and their calculus. Let R be a ring (com-
mutative and with a unit element), and let a be a non-empty
subset of R, then a is called an ideal of R in all cases where the
following two conditions are satisfied:

(1) Whenever a, and a, belong to a, then a, + a, both belong to a.

(2) If a€q, then raea for all re R.

A trivial example of an ideal is obtained by taking a to be
the whole ring. We shall call an ideal which is not the whole
ring a proper ideal; for example, the set consisting only of the
zero element is not only an ideal (this follows immediately
from the definition), but it is also a proper ideal, for by the
very definition of the unit element, 1 and 0 are different. Let us
note that every ideal a contains the zero element, for we can
choose a€a (since a is not empty) and then 0a = 0 will belong to
a by (2); further, since —a =0—a, it follows from (1) that ifaca
then —aea.

As far as is convenient we shall use small German letters g, b, ¢,
etc., to denote ideals, and we shall employ small Latin and Greek
letters to denote elements.

The four basic ways of combining ideals are known as addition,
multiplication, intersection, and residual division.
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THE PRIMARY DECOMPOSITION 5

Addition. Suppose that a and b are two given ideals, and that
¢ is the set of all elements which can be written in the form a + b,
where acq and beb. Then c is an ideal. To see this suppose that
z, €c, that x,e ¢, and that r€ R, then x; =a, + b,, ,=a, + b, where
a,, a, belong to a and where b,, b, belong to b, and we also have

T+ 2= (a3 +ap) + (b, + b;), x—xp=(a;—ay)+ (b —by),
73y = (1ay) + (7by).

But a and b are ideals 5o @, + @y, @; — @y, ra; are allin a, and b, + b,
b, —b,, rb, are all in b. This shows that z, + x,, ; — ,, and rx, are
all in ¢, and thereby establishes that ¢ is an ideal. This ideal is
called the sum of a and b and is denoted by a +b. Itis clear that
a+b=0b+a. Further, if q,, a,, a, are any three ideals then
a; + (ap+ a3) = {a; +a,) -+ ay, forboth a, + (a, + ag) and (a, + a,) + a5
consist of all elements of the form a, +a,+a,, where a;€a; for
1=1,2,3. Now every element of a can be written in the form
a+ 0 where a € a, which (since 0¢b) shows that a is contained in
a+b. Quite generally, if 4 and B are two subsets of R, we write
A< B or B2 A whenever every element of 4 is an element of
B (i.e. whenever A is contained in B), and we write 4 < B or
B> Aif A = B and there is at least one element of B not con-
tained in 4 (i.e. whenever the inclusion is strict). We have there-
fore proved that a < a+Db, and since a+b=Db +q, it follows also
that bca+b.

Multiplication. This time, supposing that a and b are given
ideals, we let ¢ consist of all elements which can be written as
a finite sum of products ab, where a e a and beb. ¢is anideal. For
suppose that z,, z,€ ¢ and that re R, then

xy=a;by+azby+ ... +a,b,, wy=aibi+azb;+...+azbg,
where the a; and the a; are in a, and the b, and b} are in b. From
this we obtain 2y + By =ayby + .. + b,
Xy —Ty=ay b+ ... +a,b, +(—a))bi+ ...+ (—ag) by,
and rey=(ra;) by + ...+ (ra,) b,

Now —ajea and ra;eq, which establishes that z; +x,, 2, —,,
and rz, are all in ¢, and, consequently, that ¢ is an ideal. The ideal
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6 IDEAL THEORY

that we have just constructed is called the product of a and b, and
is denoted by ab. We see at once that ab =ba, and, if a,, a,, a5 are
any three ideals, that a;(a,a;)=(a;a;)as, for both sides of the
latter equation consist of all elements which can be written as
a finite sum of products a,a,a;, where a,eq; for i=1,2,3.

Further, 64 abcb and a(b, +b,) = ab, + ab,.

Here the first two assertions are quite obvious; let us prove the
third. Since b, <b; +b, we have ab, = a(b,+b,) and similarly
ab, < a(b, +b,); consequently

ab, + ab, < a(b; +b,) + a(b, +b,) =a(b, +b,),
for a moment’s reflexion shows that an ideal is unaltered by
adding it to itself. Again, if a€a, b, €b;, and b, €b,, then

a(b, + by) =ab, +ab, € (ab; + ab,),

and therefore any sum of terms such as a(b; + b,) will also belong
to ab, + ab,. In other words, every element of a(b; + b,) belongs
to ab,+ab,, ie. a(b;+Db,)<ab,+ab,. Combining this with
ab, +ab, < a(b, +b,) we obtain ab; +ab, =a(b, +b,).

Intersection. Let a; (i€ l) be a finite or infinite set of ideals, the
range I of the suffix 7 being quite arbitrary. The elements which
belong to all the a, form a set which is called their intersection,
and which is denoted by N q;, or, more casually, by Na,. This

iel
intersection is not empty, for all the a; contain the element 0, and
a trivial verification shows that it is in fact an ideal. The inter-

section of a finite set of ideals q;,a,,...,a, we write either as

n

Na; oras a,Na,N...Na, We proved earlier that ab<a and

i=1

ab < b. This can now be written more conveniently as ab<anb.
Residual division. Once again suppose that a and b are two

ideals, and let us denote by ¢ the set of all elements x such that

xbeq for all beb. ¢ is an ideal. For suppose that z,, z,e c and that

re R, then for any beb we have
(% +x5) b=2,b+ 2,b,
(¢, —x)b=2b—2,6 and (rz;)b=r{xb).
Now «,b and z,b belong to a by the definition of ¢, so 2,0+ z,b
and x;b—x,b belong to a; also as x,bea we have r(x,b) € a. This
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THE PRIMARY DECOMPOSITION 7

proves that x; + x, and rz, are all in ¢, which shows that ¢ is an
ideal. c¢is known as the residual quotient of a and b, and is denoted
by a: b. Since from z€(a: b) and beb follows b€ a, we see that
(a:b)b<a;infact a: bisthelargestideal which when multiplied
by b yields an ideal contained in a. We note too that if a € a then
certainly abea for all beb, which gives us the relation a < (a:b).

For convenience we collect together the basic formulae of our
calculus, which have now been established, and add to them
some new ones of a more advanced character.

ProrposiTION 1.

(1) a+b=b+a; a+(O+c)=(a+b)+c.

(2) ab=Dba; a(bc)=(ab)c; a(b+c)=ab+ac.

(3) aca+b; abs(anb).

(4) (a:b)b<a; ac(a:b).

(6) (Na;):6="N(a;:b).

(6) (a:b):c=a:(bc).

(7) a:(by+by+...+5,)=(a:5,) M (@:B) N ... A (a:b,).
(8) a:b=a:(a+b).

Proof. (1), (2), (3) and (4) have already been established.

(5) Letze(Na,):bandlet beb, then xbe N a,s0 that zbea, for
alls. Keep i fixed, then xbeq, forallbeb;i.e. ze(a,;:0). We have
now shown that ze(a;:b) for all 4, consequently xe(q,:b).
Since x was any element of (M q;):b, we have proved that
(Na;):b<N(a;:b). Now suppose that yeN{a,:b) and let beb.
For each 7 we have y € (a;: b), hence yb € a;, and therefore yb e Na,.
But as b was any element of b, it follows from ybeNa, that
ye(Na;):b. Since y was an arbitrary element of f(q,:b) this
proves that N(a,:b) = (Na;) :b. Combining this last relation with
(Na;):b<=N(a;:b) we obtain the required result.

(6) Let xe(a:b):c andlet b, c; belong to b and ¢ respectively
for 1 <¢<s. Then xc; e (a:b) so that xb,c, e a. If we now sum over
1 we obtain (byc; + b6, + ... + b,c)€a. But by¢; +bycy+ ... +b,c,
can be any element of bc, hence we have proved that zea: (be).
Now let yea: (bc), let beb and let cec. Then ybcea. Since this
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8 IDEAL THEORY

holds for all beb, we must have yce(a:b), and as yce(a:b) for
all cec, this proves that ye(a:b):c. Our combined resuits tell
us that (a:b):c<a:(bc), and also that a:(be)<(a:b):¢. Thisis
equivalent to what we had to prove.

(7) Suppose first that n=2. Let zea: (b, +b,), let b;eb,, and
let b,eb,. Then b,+0e(b;+b,) so that xb, =x(b, +0)ea. This
holds for all b, € b,, consequently z € a : b;. Similarly, zea:b,, and
thereforez e (a:0,) N (a:b,). Nowassume thatye (a:b;) N (a:b,),
let b, €b,, and let byeb,. Sincey e (a:b,) we have yb, € a, and since
ye(a:by) we have yb,ea. By addition we obtain y(b, +0b,)€aqa,
but as b, +b, can be any element of b;+Db, it follows that
yea:(b;+by). We have now established

a:(b,+by)c(a:6;)N(a:b,) and (a:b))N(a:b,)<a:(b;+b,),

which is equivalent to (7) when n = 2. The extension to a general
7 is now obtained by a simple induction. It should be noted that
in writing b; +0,+...+b, we are already making use of the
associative law of addition, namely, a+ (b +¢)=(a+b)+c.

(8) By (M a:{a+b)=(a:a)N (a:b). Itis clear that a:qis the
whole ring R, accordingly a: (a+b)=En(a:b)=a:b.

Remarks. The relation (5) is particularly important, for it says
that an arbitrary intersection may be divided term by term.

We have already had occasion to note that an expression such
as by + by +... +1,, is effectively unambiguous on account of the
associative law of addition. A similar observation applies to
a product b, b, ... b,.

1-3. The ideal generated by a set. Let 4 be an arbitrary
non-empty set of elements of our ring R. The aggregate of all
elements which can be written in the form Xr;a;, where r,e R,
where a, € 4, and where the number of terms in the sum is finite,
is an ideal. The verification is extremely simple and will be left to
the reader. This ideal, which is known as the ideal generated by
A, contains every element of 4, for if ae 4 then la=a belongs
to the ideal in question. Further, every ideal which contains
A will also contain the ideal generated by 4, so that the ideal
generated by 4 may be characterized as the smallest ideal
containing 4. As examples we note that the sum of two ideals
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THE PRIMARY DECOMPOSITION 9

a and b is generated by the union of q and b, that is, by the set
obtained by taking all the elements of a and all the elements
of b; while ab is generated by the set of all products ab where
acaand beb.

If A consists of a finite number of elements, say a,,a,, ...,a,,
then the ideal which they generate is denoted by (a,,a,,...,a,)
and it consists of all elements which can be written in the form
7 a;+75a5+ ... +7,a,, where the 7, may be any elements of R.
Such an ideal is said to be finitely generated, and the elements a;
are called a base or basis of the ideal. We note that

(@, @g, ...,y +(by, by, .. 0,)=(aq, ..., 00,0y, ..., D),
and that (a,,a,,...,8,) (b1, by, ...,0,) = (..., a;b;,...)

where the base on the right-hand side consists of all products a; ;.
An ideal (a) generated by a single element is known as a

principal ideal.

1-4. Prime ideals. Anideal p is called a prime ideal if when-
ever abep at least one of @ and b belongs to p. Expressed in
another way, our definition states that p is prime if, and only if,
from abep and a ¢ p always follows be p. Here we have made use
of the symbol ¢ (cancelled epsilon) for the first time. It stands for
the phrase ‘does not belong to’.

ProprosiTiON 2. Let p be a prime ideal, and suppose that
ayay...a, €Y, then for at least one value of © we have a, e p. Further,
if a5, 04, ...,0, are tdeals and a,q, ... a, <, then a, <=y for at least
one value of 1.

Proof. Suppose that a,a, ...a,ep and that no a, belongs to p.
We shall obtain a contradiction. We have a,(asa;...a,)€p and
a, ¢ p, hence, by the definition of a prime ideal, a,a;...a,cp. We
now repeat the argument and obtain in succession, a,...a,€p,
a,...a,€p, and finally, a, € p. This is the required contradiction.
Next assume that a,q, ... a, Sp, but that no q, is contained in p.
For each ¢ we can choose a,€q; so that a,¢p, and then, by the
first part, a,a,...a,¢p. However, a,a,...a,€q,0a,...a, and
therefore a fortiori a,a, ... a, €p, which is again a contradiction.
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10 IDEAL THEORY

1-5. Primary ideals. An ideal qis called a primary ideal if
the conditions abe g and a ¢ q always imply that some positive
power of b is in q. Let us note that prime ideals are always
primary.

We can now indicate the lines on which the remainder of this
chapter will be developed. The prime and primary ideals play
roles which are (very roughly) similar to those played by prime
numbers and by prime-power numbers in elementary arithmetic.
They are ideals of a particularly simple type, and enjoy many
special properties. Our first object will be to derive these pro-
perties, and then later we shall consider when and how a general
ideal may be decomposed into primary components.

The proposition which follows shows that with every primary
ideal there is associated a definite prime ideal.

ProrostTioN 3. Let q be a given primary ideal, and let  denote
the set of all elements x such that x"eq for at least one positive
integral value of n. Then p is a prime tdeal which contains q, and
which is contained in every other prime ideal which contains q.

Proof. First we show that p is an ideal. Let z,yep and let
re R, Then there exist integers m and », such that z™eq and
y"€q. Now (z + y)™*" can be written as a sum of terms x#y”, where
0<p, 0< v, and where 4 +v=m+n. Accordingly, we have either
pa=m or ven. In the first case 2#€eq, and in the second case
y” € q, so that in either case x#y” € . This shows that (x + y)™*"eq,
consequently, by the definition of p, 2 + y € p. A similar argument
shows that x —yep. Again, {(rx)™=r"z™e g and therefore rzep.
Since z +y, x—y, and rz are all in p, p is an ideal.

We shall now prove that p is prime. Assume that abep and
that a ¢ p. It will be enough to show that bep. Since abep there
is a positive integer s such that a®b®e q. But a®¢ g, for otherwise
a would belong to p, consequently (since g is primary) some
power of b8 is in q. This is the same as saying that some power of
bisin q, or that bep.

It is obvious from the definition that p=q. Let p’ be any
prime ideal containing g and let xep. Then, with a suitable
integer m, ™ eq<p’. Since p’ is prime it follows from Proposi-
tion 2 that zep’. Thus p S’ and the proof is complete.
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