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CHAPTER I

Elliptic Curve Based Protocols

N.P. Smart

I.1. Introduction

In this chapter we consider the various cryptographic protocols in which
elliptic curves are primarily used. We present these in greater detail than in
the book [ECC] and focus on their cryptographic properties. We shall only
focus on three areas: signatures, encryption and key agreement. For each of
these areas we present the most important protocols, as defined by various
standard bodies.

The standardization of cryptographic protocols, and elliptic curve proto-
cols in particular, has come a long way in the last few years. Standardization
is important if one wishes to deploy systems on a large scale, since differ-
ent users may have different hardware/software combinations. Working to a
well-defined standard for any technology aids interoperability and so should
aid the takeup of the technology.

In the context of elliptic curve cryptography, standards are defined so
that one knows not only the precise workings of each algorithm, but also the
the format of the transmitted data. For example, a standard answers such
questions as

• In what format are finite field elements and elliptic curve points to be
transmitted?

• How are public keys to be formatted before being signed in a certificate?
• How are conversions going to be performed between arbitrary bit strings

to elements of finite fields, or from finite field elements to integers, and
vice versa?

• How are options such as the use of point compression, (see [ECC,
Chapter VI]) or the choice of curve to be signalled to the user?

A number of standardization efforts have taken place, and many of these re-
duce the choices available to an implementor by recommending or mandating
certain parameters, such as specific curves and/or specific finite fields. This
not only helps aid interoperability, it also means that there are well-defined
sets of parameter choices that experts agree provide a given security level. In
addition, by recommending curves it means that not every one who wishes
to deploy elliptic curve based solutions needs to implement a point counting
method like those in Chapter VI or [ECC, Chapter VII]. Indeed, since many
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4 I. ECC PROTOCOLS

curves occur in more than one standard, if one selects a curve from the in-
tersection then, your system will more likely interoperate with people who
follow a different standard from you.

Of particular relevance to elliptic curve cryptography are the following
standards:

• IEEE 1363: This standard contains virtually all public-key algo-
rithms. In particular, it covers ECDH, ECDSA, ECMQV and ECIES,
all of which we discuss in this chapter. In addition, this standard con-
tains a nice appendix covering all the basic number-theoretic algorithms
required for public-key cryptography.

• ANSI X9.62 and X9.63: These two standards focus on elliptic curves
and deal with ECDSA in X9.62 and ECDH, ECMQV and ECIES in
X9.63. They specify both the message formats to be used and give a
list of recommended curves.

• FIPS 186.2: This NIST standard for digital signatures is an update
of the earlier FIPS 186 [FIPS 186], which details the DSA algorithm
only. FIPS 186.2 specifies both DSA and ECDSA and gives a list of
recommended curves, which are mandated for use in U.S. government
installations.

• SECG: The SECG standard was written by an industrial group led
by Certicom. It essentially mirrors the contents of the ANSI standards
but is more readily available on the Web, from the site

http://www.secg.org/

• ISO: There are two relevant ISO standards: ISO 15946-2, which covers
ECDSA and a draft ISO standard covering a variant of ECIES called
ECIES-KEM; see [305].

I.2. ECDSA

ECDSA is the elliptic curve variant of the Digital Signature Algorithm
(DSA) or, as it is sometimes called, the Digital Signature Standard (DSS).
Before presenting ECDSA it may be illustrative to describe the original DSA
so one can see that it is just a simple generalization.

In DSA one first chooses a hash function H that outputs a bit-string of
length m bits. Then one defines a prime q, of over m bits, and a prime p of
n bits such that

• q divides p − 1.
• The discrete logarithm problem in the subgroup of Fp of order q is

infeasible.

With current techniques and computing technology, this second point means
that n should be at least 1024. Whilst to avoid birthday attacks on the hash
function one chooses a value of m greater than 160.
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I.2. ECDSA 5

One then needs to find a generator g for the subgroup of order q in F
∗
p.

This is done by generating random elements h ∈ F
∗
p and computing

g = h(p−1)/q (mod p)

until one obtains a value of g that is not equal to 1. Actually, there is only a
1/q chance of this not working with the first h one chooses; hence finding a
generator g is very simple.

Typically with DSA one uses SHA-1 [FIPS 180.1] as the hash function,
although with the advent of SHA-256, SHA-384 and SHA-512 [FIPS 180.2]
one now has a larger choice for larger values of m.

The quadruple (H, p, q, g) is called a set of domain parameters for the
system, since they are often shared across a large number of users, e.g. a user
domain. Essentially the domain parameters define a hash function, a group
of order q, and a generator of this group.

The DSA makes use of the function

f :

{
F
∗
p −→ Fq

x �−→ x (mod q),

where one interprets x ∈ F
∗
p as an integer when performing the reduction

modulo q. This function is used to map group elements to integers modulo q
and is often called the conversion function.

As a public/private-key pair in the DSA system one uses (y, x) where

y = gx (mod p).

The DSA signature algorithm then proceeds as follows:

Algorithm I.1: DSA Signing

INPUT: A message m and private key x.
OUTPUT: A signature (r, s) on the message m.

1. Choose k ∈R {1, . . . , q − 1}.
2. t← gk (mod p).
3. r← f(t).
4. If r = 0 then goto Step 1.

5. e←H(m)
6. s← (e + xr)/k (mod q)
7. If s = 0 then goto Step 1.

8. Return (r, s).

The verification algorithm is then given by
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6 I. ECC PROTOCOLS

Algorithm I.2: DSA Verification

INPUT: A message m, a public key y and a signature (r, s).
OUTPUT: Reject or Accept.

1. Reject if r, s �∈ {1, . . . , q − 1}.
2. e←H(m).
3. u1 ← e/s (mod q), u2 ← r/s (mod q).
4. t← gu1yu2 (mod p).
5. Accept if and only if r = f(t).

For ECDSA, the domain parameters are given by (H,K,E, q,G), where
H is a hash function, E is an elliptic curve over the finite field K, and G
is a point on the curve of prime order q. Hence, the domain parameters
again define a hash function, a group of order q, and a generator of this
group. We shall always denote elliptic curve points by capital letters to aid
understanding. With the domain parameters one also often stores the integer
h, called the cofactor, such that

#E(K) = h · q.
This is because the value h will be important in other protocols and oper-
ations, which we shall discuss later. Usually one selects a curve such that
h ≤ 4.

The public/private-key pair is given by (Y, x), where

Y = [x]G,

and the role of the function f is taken by

f :

{
E −→ Fq

P �−→ x(P ) (mod q),

where x(P ) denotes the x-coordinate of the point P and we interpret this as
an integer when performing the reduction modulo q. This interpretation is
made even when the curve is defined over a field of characteristic two. In the
case of even characteristic fields, one needs a convention as to how to convert
an element in such a field, which is usually a binary polynomial g(x), into an
integer. Almost all standards adopt the convention that one simply evaluates
g(2) over the integers. Hence, the polynomial

x5 + x2 + 1

is interpreted as the integer 37, since

37 = 32 + 4 + 1 = 25 + 22 + 1.

The ECDSA algorithm then follows immediately from the DSA algorithm
as:
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I.2. ECDSA 7

Algorithm I.3: ECDSA Signing

INPUT: A message m and private key x.
OUTPUT: A signature (r, s) on the message m.

1. Choose k ∈R {1, . . . , q − 1}.
2. T ← [k]G.

3. r← f(T ).
4. If r = 0 then goto Step 1.

5. e←H(m)
6. s← (e + xr)/k (mod q).
7. If s = 0 then goto Step 1.

8. Return (r, s).

The verification algorithm is then given by

Algorithm I.4: ECDSA Verification

INPUT: A message m, a public key Y and a signature (r, s).
OUTPUT: Reject or Accept.

1. Reject if r, s �∈ {1, . . . , q − 1}.
2. e←H(m).
3. u1 ← e/s (mod q), u2 ← r/s (mod q).
4. T ← [u1]G + [u2]Y .

5. Accept if and only if r = f(T ).

One can show that ECDSA is provably secure, assuming that the elliptic
curve group is modelled in a generic manner and H is a “good” hash function;
see Chapter II for details.

An important aspect of both DSA and ECDSA is that the ephemeral
secret k needs to be truly random. As a simple example of why this is so,
consider the case where someone signs two different messages, m and m′, with
the same value of k. The signatures are then (r, s) and (r′, s′), where

r = r′ = f([k]G);

s = (e + xr)/k (mod q), where e = H(m);

s′ = (e′ + xr)/k (mod q), where e′ = H(m′).

We then have that

(e + xr)/s = k = (e′ + xr)/s′ (mod q).

In which case we can deduce

xr(s′ − s) = se′ − s′e,
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8 I. ECC PROTOCOLS

and hence

x =
se′ − s′e
r(s′ − s)

(mod q).

So from now on we shall assume that each value of k is chosen at random.
In addition, due to a heuristic lattice attack of Howgrave-Graham and

Smart [174], if a certain subset of the bits in k can be obtained by the
attacker, then, over a number of signed messages, one can recover the long
term secret x. This leakage of bits, often called partial key exposure, could
occur for a number of reasons in practical systems, for example, by using
a poor random number generator or by side-channel analysis (see Chapter
IV for further details on side-channel analysis). The methods of Howgrave-
Graham and Smart have been analysed further and extended by Nguyen and
Shparlinski (see [261] and [262]). Another result along these lines is the
attack of Bleichenbacher [31], who shows how a small bias in the random
number generator, used to produce k, can lead to the recovery of the long-
term secret x.

I.3. ECDH/ECMQV

Perhaps the easiest elliptic curve protocol to understand is the elliptic
curve variant of the Diffie–Hellman protocol, ECDH. In this protocol two
parties, usually called Alice and Bob, wish to agree on a shared secret over
an insecure channel. They first need to agree on a set of domain parame-
ters (K,E, q, h,G) as in our discussion on ECDSA. The protocol proceeds as
follows:

Alice Bob

a
[a]G−→ [a]G

[b]G
[b]G←− b

Alice can now compute

KA = [a]([b]G) = [ab]G

and Bob can now compute

KB = [b]([a]G) = [ab]G.

Hence KA = KB and both parties have agreed on the same secret key. The
messages transferred are often referred to as ephemeral public keys, since they
are of the form of discrete logarithm based public keys, but they exist for only
a short period of time.

Given [a]G and [b]G, the problem of recovering [ab]G is called the Elliptic
Curve Diffie–Hellman Problem, ECDHP. Clearly, if we can solve ECDLP
then we can solve ECDHP; it is unknown if the other implication holds. A
proof of equivalence of the DHP and DLP for many black box groups follows
from the work of Boneh, Maurer and Wolf. This proof uses elliptic curves in
a crucial way; see [ECC, Chapter IX] for more details.
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I.3. ECDH/ECMQV 9

The ECDH protocol has particularly small bandwidth if point compression
is used and is very efficient compared to the standard, finite field based, Diffie–
Hellman protocol.

The Diffie–Hellman protocol is a two-pass protocol, since there are two
message flows in the protocol. The fact that both Alice and Bob need to be
“online” to execute the protocol can be a problem in some situations. Hence,
a one-pass variant exists in which only Alice sends a message to Bob. Bob’s
ephemeral public key [b]G now becomes a long-term static public key, and
the protocol is simply a mechanism for Alice to transport a new session key
over to Bob.

Problems can occur when one party does not send an element in the
subgroup of order q. This can either happen by mistake or by design. To
avoid this problem a variant called cofactor Diffie–Hellman is sometimes used.
In cofactor Diffie–Hellman the shared secret is multiplied by the cofactor h
before use, i.e., Alice and Bob compute

KA = [h]([a]([b]G)) and KB = [h]([b]([a]G)).

The simplicity of the Diffie–Hellman protocol can however be a disguise,
since in practice life is not so simple. For example, ECDH suffers from the
man-in-the-middle attack:

Alice Eve Bob

a
[a]G−→ [a]G

[x]G
[x]G←− x

y
[y]G−→ [y]G

[b]G
[b]G←− b

In this attack, Alice agrees a key KA = [a]([x]G) with Eve, thinking it is
agreed with Bob, and Bob agrees a key KB = [b]([y]G) with Eve, thinking
it is agreed with Alice. Eve can now examine communications as they pass
through her by essentially acting as a router.

The problem is that when performing ECDH we obtain no data-origin
authentication. In other words, Alice does not know who the ephemeral public
key she receives is from. One way to obtain data-origin authentication is to
sign the messages in the Diffie–Hellman key exchange. Hence, for example,
Alice must send to Bob the value

([a]G, (r, s)),

where (r, s) is her ECDSA signature on the message [a]G.
One should compare this model of authenticated key exchange with the

traditional form of RSA-based key transport, as used in SSL. In RSA-based
key transport, the RSA public key is used to encrypt a session key from one
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10 I. ECC PROTOCOLS

user to the other. The use of a signed Diffie–Hellman key exchange has a
number of advantages over an RSA-based key transport:

• In key transport only one party generates the session key, while in
key agreement both can parties contribute randomness to the resulting
session key.

• Signed ECDH has the property of forward secrecy, whereas an RSA-
based key transport does not. An authenticated key agreement/transport
protocol is called forward secure if the compromise of the long-term
static key does not result in past session keys being compromized. RSA
key transport is not forward secure since once you have the long-term
RSA decryption key of the recipient you can determine the past ses-
sion keys; however, in signed ECDH the long-term private keys are only
used to produce signatures.

However, note that the one-pass variant of ECDH discussed above, being a
key transport mechanism, also suffers from the above two problems of RSA
key transport.

The problem with signed ECDH is that it is wasteful of bandwidth. To
determine the session key we need to append a signature to the message flows.
An alternative system is to return to the message flows in the original ECDH
protocol but change the way that the session key is derived. If the session
key is derived using static public keys, as well as the transmitted ephemeral
keys, we can obtain implicit authentication of the resulting session key. This
is the approach taken in the MQV protocol of Law, Menezes, Qu, Solinas and
Vanstone [216].

In the MQV protocol both parties are assumed to have long-term static
public/private key pairs. For example, we shall assume that Alice has the
static key pair ([a]G, a) and Bob has the static key pair ([c]G, c). To agree
on a shared secret, Alice and Bob generate two ephemeral key pairs; for
example, Alice generates the ephemeral key pair ([b]G, b) and Bob generates
the ephemeral key pair ([d]G, d). They exchange the public parts of these
ephemeral keys as in the standard ECDH protocol:

Alice Bob

b
[b]G−→ [b]G

[d]G
[d]G←− d.

Hence, the message flows are precisely the same as in the ECDH protocol.
After the exchange of messages Alice knows

a, b, [a]G, [b]G, [c]G and [d]G,

and Bob knows
c, d, [c]G, [d]G, [a]G and [b]G.

The shared secret is then determined by Alice via the following algorithm:
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I.3. ECDH/ECMQV 11

Algorithm I.5: ECMQV Key Derivation

INPUT: A set of domain parameters (K,E, q, h,G)
and a, b, [a]G, [b]G, [c]G and [d]G.

OUTPUT: A shared secret G,

shared with the entity with public key [c]G.

1. n←�log2(#K)�/2.
2. u← (x([b]G) (mod 2n)) + 2n.

3. s← b + ua (mod q).
4. v← (x([d]G) (mod 2n)) + 2n.

5. Q← [s]([d]G + [v]([c]G)).
6. If Q is at infinity goto Step 1.

7. Output Q.

Bob can also compute the same value of Q by swapping the occurance
of (a, b, c, d) in the above algorithm with (c, d, a, b). If we let uA, vA and sA

denote the values of u, v and s computed by Alice and uB, vB and sB denote
the corresponding values computed by Bob, then we see

uA = vB,

vA = uB.

We then see that

Q = [sA] ([d]G + [vA]([c]G))

= [sA][d + vAc]G

= [sA][d + uBc]G

= [sA][sB]G.

In addition, a cofactor variant can be used by setting Q← [h]Q before the
test for whether Q is the point at infinity in Step 6.

In summary, the ECMQV protocol allows authentic key agreement to
occur over an insecure channel, whilst only requiring the same bandwidth as
an unauthenticated Diffie–Hellman.

One can also have a one-pass variant of the ECMQV protocol, which
enables one party to be offline when the key is agreed. Suppose Bob is the
party who is offline; he will still have a long-term static public/private key
pair given by [c]G. Alice then uses this public key both as the long-term key
and the emphemeral key in the above protocol. Hence, Alice determines the
shared secret via

Q = [sA] (([c]G) + [vA]([c]G)) = [sA][vA + 1]([c]G),
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