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Essential Elements of Continuous Time Dynamic Optimization

In order to motivate the following introductory material on dynamic optimization
problems, it will be advantageous to draw heavily on your knowledge of static
optimization theory. To that end, we begin by recalling the definition of the prototype
unconstrained static optimization problem, namely,

φ(α)
def= max

x∈�N
f (x;α), (1)

where x ∈ �N is a vector of decision or choice variables, α ∈ �A is a vector of
parameters, f (·) is the twice continuously differentiable objective function, that
is, f (·) ∈ C (2), and φ(·) is the indirect or maximized objective function. This is
terminology you should be more or less familiar with from prior courses.

Because we will deal repeatedly with vectors and matrices as well as the deriva-
tives of scalar- and vector-valued functions in this book, we pause momentarily to
establish three notational conventions that we shall adhere to throughout. First, all
vectors are treated as column vectors. To denote a row vector, we therefore employ
the transpose operator, denoted by the symbol ′. Thus x ∈ �N is taken to be an
N-element column vector, whereas x′ is an N-element row vector. Note also that
vectors appear in boldface type.

Second, if g(·) : �N → �M is a C (1) vector-valued function, thereby implying
that g(·) def= (g1(·), g2(·), . . . , gM (·))′, then at any x ∈ �N , we define the M × N
Jacobian matrix of g(·) by

gx(x)︸︷︷︸
M×N

def=




g1
x1 (x) g1

x2 (x) · · · g1
xN
(x)

g2
x1 (x) g2

x2 (x) · · · g2
xN
(x)

...
...

. . .
...

gM
x1 (x) gM

x2 (x) · · · gM
xN
(x)




, (2)

where gm
xn (x) is the partial derivative of g

m(·) with respect to xn evaluated at the point
(x). It is also the element in the mth row and nth column of gx(x). This definition
implies that if M = 1, so that g(·) : �N → � is now a scalar-valued function, then
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2 Foundations of Dynamic Economic Analysis

gx(x) = (gx1 (x), gx2 (x), . . . , gxN (x)) is a row vector, or equivalently, a 1 × N matrix.
This means that the derivative of a scalar-valued function with respect to a column
vector is a row vector. As an extension of this notation, if we now assume that
g(·) : �N+A → �M is a C (1) function whose arguments are the vectors x ∈ �N and
α ∈ �A, then gx(x;α) is the M × N Jacobian matrix given in Eq. (2), whereas
gα(x;α) is an M × A Jacobian matrix defined similarly.

Third, if g(·) : �N+A → � is aC (2) scalar-valued function whose arguments are
the vectors x ∈ �N and α ∈ �A, then there are four Hessian matrices that can be
defined based on g(·) because of the two different sets of variables that it depends
on, scilicet,

gxx(x;α)︸ ︷︷ ︸
N×N

def=



gx1x1 (x;α) gx1x2 (x;α) · · · gx1xN (x;α)
gx2x1 (x;α) gx2x2 (x;α) · · · gx2xN (x;α)

...
...

. . .
...

gxN x1 (x;α) gxN x2 (x;α) · · · gxN xN (x;α)


 ,

gxα(x;α)︸ ︷︷ ︸
N×A

def=



gx1α1 (x;α) gx1α2 (x;α) · · · gx1αA (x;α)
gx2α1 (x;α) gx2α2 (x;α) · · · gx2αA (x;α)

...
...

. . .
...

gxNα1 (x;α) gxNα2 (x;α) · · · gxNαA (x;α)


 ,

gαα(x;α)︸ ︷︷ ︸
A×A

def=



gα1α1 (x;α) gα1α2 (x;α) · · · gα1αA (x;α)
gα2α1 (x;α) gα2α2 (x;α) · · · gα2αA (x;α)

...
...

. . .
...

gαAα1 (x;α) gαAα2 (x;α) · · · gαAαA (x;α)


 ,

and the A × N matrix gαx(x;α), the computation of which we leave for a mental
exercise. We remark in passing that there is a matrix version of the invariance of the
second-order partial derivatives to the order of differentiation, and this too is left for
a mental exercise.

With the notational matters settled, let’s now return to the unconstrained static
optimization problem defined in Eq. (1). Assume that an optimal solution exists to
problem (1), say x = x∗(α). Typically, wewould find the solution by simultaneously
solving thefirst-order necessary conditions (FONCs) of problem (1),which are given
by

fx(x;α) = 0′
N

in vector notation, where 0N is the null (column) vector in �N , or by

fxn (x;α) = 0, n = 1, 2, . . . , N

in index notation. Unless the objective function f (·) happened to be of a particularly
simple functional form, an explicit solution for x = x∗(α) is more often than not
rare. If, however, we assume that the second-order sufficient condition (SOSC) holds
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Essential Elements of Continuous Time Dynamic Optimization 3

at x = x∗(α), that is,

h′ fxx(x∗(α);α)h < 0∀ h ∈ �N , h �= 0N ,

or

N∑
i=1

N∑
j=1

fxi x j (x
∗(α);α)hih j < 0, not all hi = 0,

thenwe can apply the implicit function theorem to theFONCs to solve for the optimal
choice vector x = x∗(α) in principle. To see why this is so, recall that the Jacobian
matrix of the FONCs is given by the N × N matrix fxx(x;α), which is identical
to the Hessian matrix of the objective function. Moreover, the SOSC implies that
the Hessian determinant of the FONCs is nonvanishing at the optimal solution, that
is, that | fxx(x;α)| �= 0 when evaluated at x = x∗(α). Because this is equivalent to
the nonvanishing of the Jacobian determinant of the FONCs, the implicit function
theorem may be applied to the FONCs to solve, in principle, for the optimal choice
vector x = x∗(α). Again, this line of reasoning should be familiar to you from prior
courses in microeconomic theory.

In light of the dynamic problems that will occupy us in this book, the most
important aspect of the above discussion concerning problem (1) is that for a given
value of the parameters, say, α = α◦, we typically solve for a particular value for
each of the decision or choice variables, say, x◦

n = x∗
n (α

◦), n = 1, 2, . . . , N . We do
this by solving a set of algebraic equations, that is to say, the FONCs. If the parameter
vector is different, say,α = α1, then usually a different value of the choice variables
is implied, say, x1

n = x∗
n (α

1), n = 1, 2, . . . , N . By their very nature, therefore, static
optimization problems ask the decision maker to pick out a particular value of the
decision variables given the parameters of the problem. For A = N = 1, Figure 1.1
depicts this situation graphically.

To add an economic spin to all of this, recall the prototype profit-maximizing
model of the price-taking firm:

π∗(p,w1,w2)
def= max

x1,x2
{pF(x1, x2) − w1x1 − w2x2},

where F(·) is the twice continuously differentiable production function, x1 and
x2 are the decision variables representing the inputs of the firm, w1 and w2 are
the market prices of the inputs, p is the output price, and π∗(·) is the indirect
profit function. Given a particular set of prices, say, (p,w1,w2) = (p◦,w◦

1,w
◦
2),

the firm seeks to determine the values of the inputs that maximize its profit, say,
x◦
n = x∗

n (p
◦,w◦

1,w
◦
2), n = 1, 2. If such optimal values exist, then they are found, in

principle, by simultaneously solving the FONCs, given by

p◦Fx1 (x1, x2) − w◦
1 = 0,

p◦Fx2 (x1, x2) − w◦
2 = 0.
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4 Foundations of Dynamic Economic Analysis

φ (α 1) = f (x1;α1)

x = x∗(α )

f (x;α)

x

φ (α ) = f (x ;α )

x1 = x∗(α 1)

f (x;α 1)

f (x;α )

Figure 1.1

Note that these are algebraic equations that in generalmust be solved simultaneously
for the optimal values of the inputs. To repeat, the most important point to take away
from this discussion is that the choice of the optimal input combination is made
just one time: there is no planning for the future, nor are there future decisions to
be made in this problem. This is exactly as the static framework of the problem
dictates.

In contrast, given the parameters of a dynamic optimization problem, its solution
is a sequence of optimal decisions in discrete time, or a time path or curve of optimal
decisions in continuous time, over the relevant planning period or planning horizon,
not just one particular value for each of the decision variables like the solution to
a static optimization problem. The optimal time path or curve is, by definition, the
one that optimizes some type of objective function. The type of objective function in
dynamic problems, however, is quite different from that in static problems. Because
the solution to a continuous time dynamic optimization problem is a time path or
curve, it appears to be reasonable and even natural for the objective function to
place a value on the decision variables at each point in time of the planning horizon
and to add up the resulting values over the relevant planning period, akin to what is
done when one computes the present value of some stream of net benefits that are
received over time.

To better motivate the form of the objective function in dynamic problems,
consider Figure 1.2. Here three typical time paths of a function x(·), or curves x(t)
associated with the function x(·), are displayed along with the resulting value of the
objective function associated with each time path J [x(·)], the latter of which we
refer to as a path value. We have denoted the independent variable by the letter t
and refer to it as time, as this is the natural interpretation of the independent variable
in intertemporal problems in economics. Notice that all time paths or curves begin
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Essential Elements of Continuous Time Dynamic Optimization 5

xb(t)

path values
  (real line)

time paths
  (curves)

 x(t)

t
t0 t1

x1

x0

J [xc (⋅)]

J [xa (⋅)]

J[xb (⋅)]

xc(t)

xa(t)

Figure 1.2

at time t = t0 at the point x = x0 and end at time t = t1 at the point x = x1, all
four of which are given or fixed, thereby requiring that the paths being compared
begin and end at the same position and time. The typical problem in dynamic
optimization seeks to find a time path or curve x(t), or equivalently a function x(·),
that, say, maximizes the objective function J [·]. Thus to each time path or curve
xi (t), i = a, b, c, or function xi (·), i = a, b, c, there is a corresponding value of the
objective function J [xi (·)], i = a, b, c.

The relationship between paths x(t) or functions x(·) and the resulting value
J [x(·)] is quite different from that encountered in typical lower division mathe-
matics courses. It represents a mapping from paths or curves to real numbers, or
equivalently, from functions to real numbers, and therefore is not a mapping from
real numbers to real numbers as in the case of functions. Such a mapping from
paths or curves to path values, or from functions to real numbers, is what Figure 1.2
depicts and is called a functional. The general notation we shall employ for such a
mapping from functions to real numbers is J [x(·)], which has been employed above.
This notation emphasizes that the functional J [·] depends on the function x(·), or
equivalently, on the entire curve x(t). Moreover, it highlights the fact that it is a
change in the position of the entire path or curve x(t), that is, the variation in the
path or curve x(t), rather than the change in t , that results in a change in the path
value or functional J [·]. Thus, a dynamic optimization problem in continuous time
seeks to find a path or curve x(t), or equivalently, a function x(·), that optimizes an
objective functional J [·].

Next we consider in more detail the form of an archetype objective functional
J [·]. Because the optimal solution to a continuous time dynamic optimization prob-
lem is a path or curve x(t), as noted above, associated with the path is its slope
ẋ(t)

def= dx(t)/dt at each point in time t in the planning horizon, assuming, of course,
that the path x(t) is smooth enough so that ẋ(t) is defined. Suppose, moreover, that
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6 Foundations of Dynamic Economic Analysis

there exists a function, say, F(·), that assigns or imputes a value to the path and
its associated derivative at each point in time in the planning horizon, the latter
represented by the closed interval [t0, t1], 0< t0 < t1. The imputed value of the path
at each point in the planning horizon, therefore, depends on the moment of time t
the decision is made and the value of the decision or choice variable at that time
x(t), as well as on the slope at that time ẋ(t). Hence we have F(t, x(t), ẋ(t)) as
the value of the function that imputes a value to the path x(t) with slope ẋ(t) at
time t . Because the path x(t) must necessarily travel through an interval of time,
namely, the planning horizon, its total value as represented by the functional J [x(·)]
is given by the “sum” of all the imputed values F(t, x(t), ẋ(t)) for each t in the
planning horizon [t0, t1]. Moreover, because we are operating in continuous time,
the appropriate notion of summation is represented by a definite integral over the
closed interval [t0, t1]. Thus, the value of the functional we wish to optimize is given
by

J [x(·)] def=
t1∫

t0

F(t, x(t), ẋ(t)) dt. (3)

In economics, J [x(·)] often represents the present value of net benefits from pur-
suing the policy x(t), with instantaneous net benefits given by F(t, x(t), ẋ(t)). In
general, one calls x(t) the state of the system, or value of the state variable, at time
t , and ẋ(t) the rate of change of the system, or velocity, at time t . Typically, the ex-
plicit appearance of t as an argument of F(·) is a result of discounting in economic
problems. Equation (3) represents the prototype form of the objective functional
for calculus of variations problems, which are but one class of continuous time dy-
namic optimization problems.More general objective functionals will be introduced
shortly, when we commence with the study of optimal control theory. But for now,
the present discussion and motivation are sufficient, for the idea of a mapping from
paths or curves to the real line and the form of the objective functional is what one
must come away with.

Beforemoving on to some additional motivational material, a few remarks about
the form of the objective functional in Eq. (3) are warranted. First, the functional
J [·] is not, in general, the area under the curve x(t) between the points t = t0
and t = t1, the latter of which is represented by the integral

∫ t1
t0

x(t)dt . Thus, in
optimizing J [·], we are not making decisions to optimize the area under the curve
x(t). Rather, we are picking paths x(t) such that the “sum” of the values imputed to
the path x(t) and its derivative ẋ(t) at each point in time in the planning horizon is
optimized. Second, the form of J [·] given in Eq. (3) is not the most general form
of the objective functional for calculus of variations problems, but it is the most
common or canonical in economic theory, as examples to be introduced latter will
confirm. In motivating the form of J [·], for example, there is no particular reason
why F(·) would not, in general, depend on the second or higher derivatives of x(t).
What dictates which derivatives of the path x(t) that are relevant to the form of J [·]
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Essential Elements of Continuous Time Dynamic Optimization 7

is the particular economic phenomena under study, and as we will shortly see, most
of the problems of relevance to economists dictate the presence of ẋ(t) in F(·), but
rarely higher derivatives.

The question you may now be wrestling with is: How does one know when to
construct a dynamic model, as opposed to a static model, to study the economic
events under investigation? The answer is most easily explained and motivated
within the context of a simple example. Imagine an individual on an isolated island
on which fresh water is available in an unlimited supply, and for which essentially
no effort is required to collect the water. You may picture a brook or stream of fresh
water passing next to the individual’s hut. The only source of food is fish, which
does require the expenditure of effort on the part of this individual. Clearly this
individual can survive on this island, and the problem that this person faces is how
much fish to catch each day for consumption.

Initially, let’s assume that the harvested fish are impossible to store for any length
of time, either because of the extreme heat of the environment or because of the lack
of materials necessary to build a suitable storage facility. As this individual gets up
on any day, the decision to be made is how much fish to catch for this day only, as
storage has been ruled out. Any fish caught beyond the amount to be consumed that
day simply rots and is wasted. Because fishing is costly to the individual, the catch
on any day will not exceed the individual’s consumption per day. Notice that the
decision of howmuch fish to catch this day is independent of fish caught on previous
days or fish expected to be caught on future days, as the lack of storage prevents any
carryover of the fish. This lack of storage breaks any link between past decisions and
the present decision, and any link between the present decision and future decisions.
In other words, the absence of any durable asset or the inability of this person to
store any of the asset (fish) renders current choices or actions independent of those
made in the past, or those to be made in the future. For example, even if this person
caught twice as many fish as could be consumed in a day, this would not relieve the
individual of fishing the following day because the fish simply spoil, leaving zero
edible fish for tomorrow. Thus the decision of how much fish to catch on any day
is dependent only on the circumstances or environmental conditions of that day.
As the reader may have guessed, this is exactly what dictates the decision problem
faced by this individual as simply a sequence of static choice problems, each day’s
decision being independent of past and future decisions, and identical to that to be
made on any other day, save for differing environmental conditions.

The readermaywonderwhy this situation is not a dynamic optimization problem
since a sequence of optimal decisions must be made through time. It is not the
sequence of decisions or the introduction of time per se that defines a dynamic
choice problem but the link between past, present, and future decisions that makes a
problemdynamic. In the scenario above, the lack of storage breaks this link, reducing
the problem to a sequence of independent static optimization problems. So to have
a dynamic optimization problem, there must be some systematic link between past,
present, and future decisions.
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8 Foundations of Dynamic Economic Analysis

Now let’s assume that fish caught on any day in excess of that day’s consumption
can be stored. Because we are concerned here about the structure of a problem that
makes it dynamic, the actual period of time in which the fish can be stored or
preserved is not important; the fact that fish caught on one day can be stored for
future consumption is the important idea. Just as in the previous scenario, when this
individual wakes up on any given day, a decision about how much fish to catch that
day must be made. What is different, however, is that a stock of fish may exist in
storage from the previous day’s catch, and this stock must be taken into account
in today’s harvesting decision. Thus, the assumption of storage (or a durable good)
provides a direct link between past decisions and the current decision, a link that
was absent when storage was ruled out. Likewise, the decision to catch fish (or not)
today impacts the amount of fish in storage for future consumption, and therefore
impacts future decisions about catching fish. Storage provides a link between current
decisions and future decisions as well. It is exactly this intertemporal linking of
decisions that makes this second scenario a dynamic choice problem: decisions
made in the past affect the current choice, which, in turn, affects future choices.

Although it may appear that in this simple example, there is only one variable,
scilicet, fish, there are actually two: catching fish and fish in storage. The storage of
fish is not a variable that is controlled directly by the individual; it responds to the
amount caught, amount eaten, and time elapsed between catches. Inmacroeconomic
terminology, the amount of fish in storage is a stock variable, or a state variable in the
language of optimal control theory; that is, it is defined at a point in time, not over a
period or length of time. The act of fishing, on the other hand, is defined over a period
of time (a flow variable) and is directly under the control of the individual. In the
language of optimal control theory, the catch rate of the fish is the control variable.

With the essence of a continuous time dynamic optimization problem now con-
veyed, let’s turn to themotivation and basicmathematical setup of an optimal control
problem.We therefore elect to proceed directly to optimal control theory rather than
first formally introducing the calculus of variations and then optimal control theory.

Optimal control theory is based on a new way of viewing and formulating
calculus of variations problems, and thus enables one to see them in a different
light. In particular, optimal control theory often brings the economic intuition and
content of a continuous time dynamic optimization problem to the surface more
readily than does the calculus of variations, thereby enhancing one’s economic
understanding of the problem. It is this change of vista that makes optimal control
theory a powerful tool for solving dynamic economic problems, for the calculus
of variations can solve all problems that can be solved with optimal control theory,
though not necessarily as easily, in which case both theories yield equivalent results.
In fact, some textbooks, such as Hadley and Kemp (1971), develop the calculus of
variations in its full generality and then use the results to prove those in optimal
control theory.

The focus in optimal control theory is on some system. In economic problems,
this may be the economy, an individual, or a firm. As is usual in intertemporal
problems, we are interested in optimizing, in some specified sense, the behavior

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521603684 - Foundations of Dynamic Economic Analysis: Optimal Control Theory and
Applications
Michael R. Caputo
Excerpt
More information

http://www.cambridge.org/0521603684
http://www.cambridge.org
http://www.cambridge.org


Essential Elements of Continuous Time Dynamic Optimization 9

of the system through time. It is assumed that the manner in which the system
changes through time can be described by specifying the time behavior of certain
variables, say x(t) ∈ �N , called state variables, where t is the independent variable
that we will almost always refer to as time. In general, the vector-valued function
x(·) : � → �N is assumed to be a piecewise smooth function of time with not
more than a finite number of corners. This means that the component functions
xn(·), n = 1, 2, . . . , N , are continuous but that the derivative functions ẋn(·), n =
1, 2, . . . , N , are piecewise continuous in the sense that ẋn(·) has at most a finite
number of discontinuities on each finite interval with finite jumps (i.e., one-sided
limits) at each point of discontinuity. In economic problems, a capital stock, a stock
of money or any asset for that matter (e.g., wealth), a stock of fish, the amount of
some mineral in the ground, the stock of water in an aquifer, the number of chairs in
a classroom, or even the distribution function of a random variable may represent a
state variable. Generally, the state variables are defined at a given point in time, as
the aforementioned examples indicate. This is why state variables are often referred
to as stocks by economists.

Before pressing on, it is prudent at this juncture to pause momentarily and give
a precise definition of a piecewise continuous function and a piecewise smooth
function, for such functions will be encountered with some regularity in optimal
control theory. To that end, we have the following definition.

Definition 1.1: A function φ(·) is said to be piecewise continuous on an interval
α ≤ t ≤ β if the interval can be partitioned by a finite number of points α = t0 <

t1 < · · · < tK = β so that

1. φ(·) is continuous on each open subinterval tk−1 < t < tk , k = 1, 2, . . . , K , and
2. φ(·) approaches a finite limit as the end points of each subinterval are approached

from within the subinterval.

In other words, a function φ(·) is piecewise continuous on an interval α ≤ t ≤ β if it
is continuous there except for a finite number of jump discontinuities. An example
of a piecewise continuous function is shown in Figure 1.3. Given this definition, it
is now a relatively simple matter to define a piecewise smooth function.

Definition 1.2: Afunction
(·) is said to bepiecewise smoothon an intervalα ≤ t ≤
β if its derivative function 
̇(·) is piecewise continuous on the interval α ≤ t ≤ β.

This definition therefore implies that the derivative of a piecewise smooth function
is piecewise continuous, and that the integral of a piecewise continuous function is
piecewise smooth.

It is also assumed that there exists another class of variables known as control
variables, say u(t) ∈ �M , where M �= N in general. The control variables may
undergo jump changes and are therefore only restricted to be piecewise continuous in
general, that is, the function u(·) : � → �M is assumed to be a piecewise continuous
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10 Foundations of Dynamic Economic Analysis

φ( )t

α β
t

Figure 1.3

function of time. In economic problems, control variables are usually represented
by flow variables that are typically defined over an interval of time. Archetypal
control variables in economic problems include the investment rate in an asset, the
consumption rate of a good, and the harvest rate of a resource. Control variables are
those variables that the decision maker has explicit control of in the optimal control
problem, as the name implies. Control variables are thus the analogues of the choice
or decision variables in static optimization theory. The control variables will not,
in general, be allowed to take on arbitrary values. Generally, it is assumed that for
each t in the planning horizon, the control variables are restricted to vary in a fixed
and prespecified setU ⊆ �M , called the control set or control region. It is typically
required that u(t) ∈ U for the entire planning horizon. The control set U may be
any fixed set in �M , say, an open or closed set, but is not restricted in any special
way. Of particular importance is the case in which U is a closed set in �M . In this
case, the control variables are allowed to take values at the boundary of the control
set, a situation that the classical calculus of variations cannot handle so easily. In
typical economic problems, the control set may be represented by nonnegativity
restrictions on the control variables or by fixed inequality constraints that bound
the control variables. Finally, it is assumed that every variable of interest can be
classified as a state variable or a control variable.

In view of the restrictions placed on the two classes of variables, we may think
of the control variables as governing not the values of the state variables, but their
rate of change. More specifically, it will be assumed that the dependence of the
state variables on the control variables can be described by a first-order differential
equation system, namely,

ẋ(t) = g(t, x(t), u(t))

in vector notation, or

ẋn(t) = gn(t, x(t), u(t)), n = 1, 2, . . . , N
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