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THE DEVELOPMENT OF STRUCTURED RING SPECTRA

A. D. ELMENDORF

Abstract. The problem of giving a succinct description of multiplica-
tive structure on spectra was recognized almost as soon as the idea of a
spectrum was formulated. This paper aims to describe the major features
of the historical precursors to the S-module approach of [2]. In particu-
lar, we consider the purely homotopical notion of a ring spectrum, May’s
concepts of external smash product and its internalization, the Lewis-May
twisted half-smash product, and this product’s use in formulating May and
Quinn’s notion of an E∞ ring spectrum. We then describe how three es-
sentially trivial (but crucial) observations led to the idea of an L-spectrum,
and soon thereafter to S-modules. We conclude by describing the good
formal and homotopical properties of the category of S-modules.

The aim of this paper is to give some historical background to the first of the
modern treatments of structured ring spectra: the S-module approach of [2].
There have been subsequent models developed as well; I’d like to mention in
particular the symmetric spectra originally developed by Jeff Smith [3] and
the orthogonal spectra of Mandell and May ([6] and [7]). There has been
quite a lot of work done relating these various approaches, but this paper is
concerned with the S-module approach only.

The invention of spectra, in the sense of algebraic topology, is usually
credited to Lima in the late 1950’s, although the first definition in print
appears to be Spanier’s [10]. There were a number of sources for the idea,
of which I’d like to mention three: stable maps and the Spanier-Whitehead
category, cohomology and Eilenberg-Mac Lane spaces, and cobordism. All of
these involve sequences of spaces A0, A1, . . . and maps

Ai → ΩAi+1

(or equivalently, ΣAi → Ai+1.) Two of the problems that were recognized
early on were

(1) What is the “right” notion of morphism; some only “start to exist”
after n stages, and

(2) what is the correct way to formulate multiplicative structure?

Boardman gave what were quickly recognized as the right answers after

passage to homotopy – he constructed a symmetric monoidal closed triangu-
lated category, now universally called the stable category, whose study has
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8 The Development of Structured Ring Spectra

a large literature of its own. Although Boardman never published his con-
struction, an account was given by Vogt [11]. Adams gave a treatment in
his Chicago notes [1], and May also gave a construction in a series of papers
and books; see particularly [8] and [9]. All these constructions shared a com-
mon problem: the smash product construction in the underlying category of
spectra was not associative until passage to homotopy. As a consequence,
there were no strict ring spectra, and no “good” categories of module spec-
tra. One problem in particular will illustrate this: if R is a ring spectrum in
the weak sense, i.e., it descends to a ring object in the stable category, and
if M and N are R-modules in the same weak sense, and further we have a
map M → N of R-modules, then the cofiber of this map need not even be an
R-module. Although topologists were able to use these weak notions to good
effect nonetheless, the situation was clearly less than completely satisfactory.

Progress came first from Peter May, who began by resolving problem 1; see
[8]. His solution was to restrict attention to spectra for which the structure
maps Ai → ΩAi+1 are homeomorphisms. Having done so, he showed that all
spectra are weakly equivalent to ones of this restrictive form, and further, the
“naive” sort of morphism, consisting of sequences of maps making obvious
diagrams commute, suffice for this sort of spectrum. (The modern point of
view is that he restricts his attention to fibrant objects.) The next step was
to remove the indexation on natural numbers, by developing what he called
coordinate-free spectra ; see [9], although some details were later deleted in the
equivariant version due to Lewis and May [4] (and ironically enough, restored
in the definition of L-spectra, below.) These are defined by first picking a
universe U : a real inner product space isomorphic to R

∞, topologized using
the colimit topology from the sequence

{0} ⊂ R
1 ⊂ R

2 ⊂ · · · ,

with this topology used to topologize spaces of linear isometries that will arise
shortly. The index set for a spectrum over the universe U is the set of finite
dimensional subspaces of U . In detail, a spectrum E assigns a space EV to
each finite dimensional subspace V < U , and whenever W ⊥ V , there is a
structure homeomorphism

EV
∼=

�� ΩW E(V ⊕ W ),

subject to an associativity diagram. Here ΩW X is the function space F (SW ,

X), and SW is the one-point compactification of W . Morphisms from E to
E ′ consist of maps EV → E ′V making the obvious squares commute. We
get the category SU of spectra over U . We note for later use that SU is both
complete and cocomplete, meaning it has all limits and colimits; this is not
related to the coordinate-free nature of the spectra in SU .

A key point about spectra with structure maps consisting of homeomor-
phisms is that the constituent spaces need only be given for a cofinal set of
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A. D. Elmendorf 9

indices: the rest can be filled in by looping spaces given for larger indices.
This allows us to define the external smash product, which is a functor
SU ×SU

′
→ S(U ⊕U ′) for any pair of universes U and U ′. From the previous

remark, we need only consider subspaces of U ⊕ U ′ of the form V ⊕ V ′ for
V < U and V ′ < U ′, and for these, we make a preliminary definition of

(E ∧ E′)(V ⊕ V ′) := EV ∧ E ′V ′.

For structure maps, we use the composite

ΣW⊕W ′

EV ∧ E ′V ′ ∼= ΣW EV ∧ ΣW ′

E ′V ′
→ E(V ⊕ W ) ∧ E ′(V ′

⊕ W ′)

= (E ∧ E ′)(V ⊕ V ′
⊕ W ⊕ W ′).

The main philosophical point here is that there is no issue with permuting
indices, since all of the indexing subspaces are orthogonal, so the direct sum is
completely independent of the order of the summands. There is one technical
annoyance to be confronted: the adjoint structure maps

(E ∧ E′)(V ⊕ V ′) → ΩW⊕W ′

(E ∧ E′)(V ⊕ V ′
⊕ W ⊕ W ′)

are not homeomorphisms any more. However, there is a “spectrification”
functor that corrects this situation, and we do get a good smash product
E ∧E ′ indexed on U ⊕U ′, where by “good” I mean that we get a symmetric
monoidal structure on the category

∐

n≥0

S(Un).

Unfortunately, the homotopy category we get is wrong: instead of the stable
category, we get a coproduct of one copy of the unstable homotopy category
(for n = 0) and infinitely many of the stable category. May’s solution for this
is to pick an element f ∈ I(U2,U) (the space of linear isometries from U2 to
U), and “push down” E∧E ′ using f : we get a spectrum f∗(E∧E ′) ∈ SU . (The

push down process proceeds by defining (f∗D)(V ) = ΣV −ff−1V D(f−1V ), and
then spectrifying.) Unfortunately, this destroys the associativity and commu-
tativity of the external smash product, since no such choice of f is associative
and commutative. May does show that this gives the right construction in
homotopy.

The technical heart of the solution via S-modules is the twisted half-smash
product introduced by Lewis, May, and Steinberger [4]. This is a functor
with input two universes U and U ′, an unbased space A with a structure map
A → I(U ,U ′), and a spectrum E over the first universe U . The output is
a spectrum A ⋉ E over U ′. This construction has the following important
formal properties:

(1) Given A → I(U ,U ′) and B → I(U ′,U ′′), then there is a canonical
isomorphism

B ⋉ (A ⋉ E) ∼= (B × A) ⋉ E.
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10 The Development of Structured Ring Spectra

(2) Given A1 → I(U1,U
′

1) and A2 → I(U2,U
′

2), then there is a canonical
isomorphism

(A1 ⋉ E1) ∧ (A2 ⋉ E2) ∼= (A1 × A2) ⋉ (E1 ∧ E2).

(3) If f ∈ I(U ,U ′), then {f} ⋉ E ∼= f∗E. In particular, {idU} ⋉ E ∼= E.

In addition, the most important homotopical property of the twisted half-
smash product is the following: given a homotopy equivalence A1 → A2 (not

a weak equivalence) and a structure map A2 → I(U ,U ′), then the induced
map

A1 ⋉ E → A2 ⋉ E

is a homotopy equivalence when E is “tame”; this hypothesis is satisfied if
E is a CW-spectrum. In general, we don’t know if this map is even a weak
equivalence. The point is that the homotopy equivalence between A1 and A2

need not be over I(U ,U ′). For further details, see [2], especially the Appendix
by Michael Cole. This homotopical property implies that the inclusion map
{f} ⊂ I(U2,U) induces a homotopy equivalence

f∗(E ∧ E ′) ≃ I(U2,U) ⋉ (E ∧ E′)

for tame spectra E and E ′.
We are now in a position to describe the original notion of a structured

ring spectrum, called an E∞ ring spectrum. First, for notation, we let L(n) =
I(Un,U); this is the nth space in the linear isometries operad using the
universe U . The intuition is that given a spectrum E, the spectrum L(n)⋉E∧n

encodes all possible n-fold smash powers of E, and has the correct homotopy
type (at least when E is tame.)

Definition 1. An E∞ ring spectrum R over U is a spectrum over U together
with structure maps

ξn : L(n) ⋉ R∧n → R.

These must be “coherent” in the sense that several diagrams must commute;
the most important (and largest) is the following, in which the map γ is the
structure map for the operad L:

L(n) ⋉ ((L(j1) ⋉ R∧j1) ∧ · · · ∧ (L(jn) ⋉ R∧jn))

∼=
��

1 (ξj1
∧···∧ξjn )

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(L(n) × L(j1) × · · · × L(jn)) ⋉ R∧(j1+···+jn)

γ id

��

L(n) ⋉ R∧n

ξn

��

L(j1 + · · · + jn) ⋉ R∧(j1+···+jn)
ξj1+···+jn

�� R.

Further, the maps must be commutative, in the sense that ξn descends to a
map from the orbit spectrum L(n) ⋉Σn

R∧n.

This definition can be given in an alternative, somewhat more formal way:
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Definition 2. Given a spectrum E over U , let

CE =
∨

n≥0

L(n) ⋉Σn
E∧n.

Then C is a monad in SU , and an E∞ ring spectrum is the same thing as a

C-algebra.

And there things stood for 15 or 20 years.
It wasn’t until 1993 that a combination of three essentially trivial ob-

servations led to a breakthrough with the development of L-spectra and,
from them, S-modules; see [2] for full details. The first observation is that
L(2) ⋉ (E ∧ E ′) is a canonical smash product for E and E′, encoding all
possible choices of f∗, and further it has the correct homotopy type. The
stumbling block is that it’s not associative. The key to correcting this defect
comes from the second observation, which is that C has a tiny submonad L,
defined as

LE := L(1) ⋉ E.

An L-spectrum is simply an algebra over the monad L. Since L is a
submonad of C, it follows automatically that every E∞ ring spectrum is an
L-spectrum. Further, although this took a bit of work, L-spectra form a
perfectly good model of the stable category.

The third observation, due to Mike Hopkins, tells us how to put the first
two observations together in order to construct an associative smash product.
It is:

Lemma 3. (Hopkins’ Lemma) Consider the left action of L(1) on L(j)
for any j and the right action of L(1) × L(1) on L(2), both by means of

composition. Then if i ≥ 1 and j ≥ 1, the structure map γ of the operad L

induces an isomorphism

L(2) ×L(1)×L(1) L(i) × L(j) ∼= L(i + j).

Proof. By choosing isomorphisms U i ∼= U and U j ∼= U , the coequalizer splits.
�

This allows us to make a key definition.

Definition 4. Given L-spectra M and N , their smash product is given by

M ∧ N := L(2) ⋉L(1)×L(1) (M ∧ N).

Here the unsubscripted smash product is the external smash product de-
scribed above.

Proposition 5. The smash product of L-spectra is coherently associative and

commutative.
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12 The Development of Structured Ring Spectra

Proof. The essential point is the associativity, and this follows by using Hop-
kins’ Lemma to show that both ways of associating are canonically isomorphic
to

L(3) ⋉L(1)3 (M1 ∧ M2 ∧ M3).

�

A small problem is that this smash product of L-spectra is not quite unital;
instead, there is a canonical weak equivalence

λ : S ∧ M → M

for any L-spectrum M , but this is sufficient to formulate most concepts.
In particular, we can define a strictly commutative L-ring spectrum as an
L-spectrum A together with a unit map η : S → A and an associative,
commutative, and unital map

µ : A ∧ A → A.

It is now an easy proposition that this recovers exactly the definition of E∞

ring spectrum!
However, we don’t have to be satisfied with the weak notion of units present

with L-spectra, because of a stroke of good luck: it turns out that the unit
map for the sphere spectrum, λ : S ∧ S → S, is an isomorphism. This
is because of the “accident” that Hopkins’ lemma is true when i = j = 0,
although the proof is different (and the lemma fails when one index is 0
and the other is not.) It follows immediately that λ : S ∧ M → M is an
isomorphism precisely when M is of the form S ∧ M ′, and it is these M ’s
that we call S-modules. A bit of extra work gives us the following:

Proposition 6. The smash product of L-spectra is symmetric monoidal on

the full subcategory of S-modules, and this subcategory models the stable cat-

egory with its smash product.

We write the category of S-modules as MS.
We are now in a good position to mimic all the formal apparatus of com-

mutative algebra, once a few more details are settled; it is to these we now
turn. First, we would like to have a function spectrum construction adjoint to
the smash product, just as one has in categories of (ordinary) modules. This
relies ultimately on the fact that the twisted half-smash product has a right
adjoint, called the twisted function spectrum, written F [A,E ′), with input
A → I(U ,U ′) and a spectrum E ′ over U ′, and output a spectrum over U .
For details, see [2]. The end result is all we could expect: there is a function
spectrum construction on S-modules, written FS(M, N) for which

MS(M ∧ N,P ) ∼= MS(M, FS(N, P )).

Our second piece of unfinished business is to show that MS has all the
limits and colimits we could possibly want.
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Proposition 7. The category of S-modules is complete and cocomplete.

Proof. First, May’s category SU is complete and cocomplete, and the cate-
gory of L-spectra is a category of algebras over it. Therefore, by [5], section
VI.2, exercise 2, the category of L-spectra is complete. Further, L has a right
adjoint L

#, given by L
#E := F [L(1), E). L

# is consequently a comonad
and the category of algebras over L can be identified with the category of
coalgebras over L

#. By the dual exercise, L-spectra form a cocomplete cat-
egory. Next, we examine the functor S ∧ : L-spectra → MS, and find
that it has both a left and a right adjoint, with the right adjoint being the
inclusion of MS into L-spectra. Consequently, colimits in MS are created in
L-spectra, and limits exist and are gotten by applying S ∧ to the limit in
L-spectra. �

Now we can import the entire formal apparatus of commutative algebra
into stable homotopy theory: rings, commutative rings, algebras, left and
right modules, tensor products, and function objects, with all the expected
properties. As an example, we define a commutative S-algebra to be simply a
commutative monoid in the symmetric monoidal category of S-modules, and
we quickly see that all of them are E∞ ring spectra, and further, given an
E∞ ring spectrum A, then S ∧ A is a commutative S-algebra. Because of
the isomorphism S ∧ S ∼= S, this accounts for all commutative S-algebras,
and since the unit map λ : S ∧ A → A is always a weak equivalence, and
easily seen to be a map of E∞ ring spectra, we recover all the homotopical
properties of E∞ ring spectra by considering only commutative S-algebras.

I’d like to close by mentioning additional structure that is present: the cat-
egories of S-modules, S-algebras, commutative S-algebras, and the categories
of algebras and modules over a given S-algebra are all topological model cat-
egories in which all objects are fibrant. In some sense this is the most exciting
part of the new developments with structured ring spectra, since it allows us
to talk about homotopy categories that were not even in the picture previ-
ously. These new homotopy categories have already inspired a considerable
body of work, some of which appears elsewhere in this volume, but clearly
much more is still to be done. Let’s look forward to the exploration of these
brave new worlds!
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COMPROMISES FORCED BY LEWIS’S THEOREM

A. D. ELMENDORF

Abstract. In 1991, Gaunce Lewis published a theorem showing that a
quite minimal list of desiderata for an “ideal” category of spectra was
inconsistent; see [4]. This result requires any category modeling stable
homotopy theory to make some compromises in its formal structure. This
short paper describes the compromises present in MS , the category of
S-modules developed in [2], together with the amusing consequence that
MS contains a copy of the (unstable!) category of topological spaces.

At this point we have several categories of spectra that are symmetric
monoidal, with their smash products descending to the smash product in the
stable category; let me mention in particular the S-modules of [2] and the
symmetric spectra of [3]. These categories are much more nicely behaved
than any of their predecessors, but their behavior is not absolutely ideal,
because it can’t be. This is a theorem of Gaunce Lewis’s, whose paper [4] was
published before any of the current batch of symmetric monoidal categories of
spectra were developed. Suppose we have a candidate for a “good” category
of spectra, which we ambiguously call S. Lewis sets out the following pretty
minimal list of properties for S, all of which are devoutly to be desired:

(1) The category S has a symmetric monoidal product, which we call
smash and write ∧, as usual.

(2) Let T be the category of based topological spaces (in some convenient
version such as compactly generated weak Hausdorff). Then there is
a pair of functors Σ∞ : T → S and Ω∞ : S → T with Σ∞ being left
adjoint to Ω∞.

(3) The unit for the smash product in S is Σ∞S0.
(4) Σ∞ is a lax monoidal functor in the sense that there is a natural map

Σ∞(X ∧ Y ) → Σ∞X ∧ Σ∞Y,

subject to diagrams encoding commutation with the monoidal struc-
ture maps.
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16 Compromises forced by Lewis’s theorem

(5) There is a natural weak equivalence θ : Ω∞Σ∞X → QX (where QX

is the usual stabilization construction) for which the diagram

X
η

������������
η

��
��

��
��

��

Ω∞Σ∞X
θ

�� QX

commutes, where η is used generically for the unit of an adjunction.

Theorem 1. (Lewis ’89) The above five properties are inconsistent.

The proof is distressingly simple. Equivalent to property 4, there is a natural
map

Ω∞E1 ∧ Ω∞E2 → Ω∞(E1 ∧ E2)

which also commutes with the monoidal structure maps. Suppose E is a
commutative monoid in S: what we would like to call a strictly commutative
ring spectrum. Then the two maps

Ω∞E ∧ Ω∞E �� Ω∞(E ∧ E)
Ω∞µ

�� Ω∞E

and

S0
η

�� Ω∞Σ∞S0 �� Ω∞E

make Ω∞E into a commutative monoid in T , using the symmetric monoidal
smash product of based spaces. Now the unit, in this case Σ∞S0, is always
a commutative monoid in a symmetric monoidal category, so in particular,
Ω∞Σ∞S0 must be a commutative monoid in T . From property 5, we now
see that QS0 is weakly equivalent to a commutative monoid. It follows from
a theorem of Moore [5] that QS0 is homotopic to a product of Eilenberg-
Mac Lane spaces. Life would be a lot simpler if this were true. . .

As a consequence of this theorem, every “good” category of spectra has to
edge around the fact that it can’t satisfy all five of these properties simulta-
neously. Here’s what MS, the category of S-modules does.

MS is symmetric monoidal, so property 1 is satisfied, and there is an
adjoint pair (Σ∞, Ω∞), so 2 is satisfied. We actually have an isomorphism

Σ∞(X ∧ Y ) ∼= Σ∞X ∧S Σ∞Y,

so property 3 is more than satisfied. And the unit for ∧S is Σ∞S0, so property
4 is satisfied, too. This leaves property 5 to fail, which it does in spectacular
fashion: Ω∞Σ∞X is actually homeomorphic to X for all spaces X, no matter
how badly behaved! Clearly Ω∞ is not what we usually think, since Σ∞

does look pretty much like what we think it should. In fact, what I’ve been
calling Ω∞E is actually the space MS(S,E) for an S-module E. The fact
that MS(S, Σ∞X) ∼= X is a special case of the following theorem; see [1] for
details:
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Theorem 2. The functor Σ∞ : T → MS induces a homeomorphism

T (X, Y ) → MS(Σ∞X, Σ∞Y )

for all spaces X and Y .

The proof reduces the general case to the specific one first mentioned, and
then computes in an extremely explicit fashion.

As a consequence of this theorem, MS has inside it a perfect copy of
T , the category of topological spaces, as the full subcategory of suspension
spectra. This should seem bizarre, since the purpose of MS is to model stable
homotopy, and in T , nothing has been stabilized. In fact, if we just use honest
homotopy classes, which amounts to taking π0 of the mapping spaces between
spectra, we don’t get stable homotopy, as we see from the presence of this
copy of T . The situation is saved by the requirement that we invert the
weak equivalences, not just the ordinary homotopy equivalences, and doing
so precisely stabilizes the maps between suspension spectra. See [1] for the
details. As an added amusement, we find that if X is a CW complex, then
in the model category structure on MS, the S-module Σ∞X is homotopic to
a cofibrant S-module precisely when X is contractible. From this point of
view, it’s cofibrant replacement that stabilizes the maps between suspension
spectra.

In conclusion, I should mention that there is another candidate for the
(Σ∞, Ω∞) adjunction between T and MS which does satisfy Ω∞Σ∞X ≃ QX.
Obviously, this is the correct pair of functors to use when doing homotopy
theory. However, if we use this pair, we find that Σ∞S0 is not the unit of
the smash product of S-modules, this being crucial to the proof of Lewis’s
theorem. Once again, we have to compromise when setting up the formal
properties of a “good” category of spectra.
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