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Latent Class Analysis

The Empirical Study of Latent Types, Latent Variables,
and Latent Structures

Leo A. Goodman

1. INTRODUCTION

I begin this introductory section on latent class analysis1 by considering
this subject in its simplest context; that is, in the analysis of the cross-
classification of two dichotomous variables, say, variables A and B. In
this context, we have the simple two-way 2 × 2 cross-classification table
{A, B}, where the two rows of the 2 × 2 table correspond to the two
classes of the dichotomous variable A, and the two columns of the 2 × 2
table correspond to the two classes of the dichotomous variable B. We
let Pi j denote the probability that an observation will fall in the ith row
(i = 1, 2) and jth column ( j = 1, 2) of this 2 × 2 table. In other words, Pi j

is the probability that an observation will be in the ith class (i = 1, 2) on
variable A and in the jth class ( j = 1, 2) on variable B. When variables
A and B are statistically independent of each other, we have the simple
relationship

Pi j = PA
i PB

j , (1)

where PA
i is the probability that an observation will fall in the ith row of

the 2 × 2 table, and PB
j is the probability that an observation will fall in

the jth column of the 2 × 2 table. In other words, PA
i is the probability

that an observation will be in the ith class on variable A, and PB
j is the

probability that an observation will be in the jth class on variable B; with

PA
i = Pi+ =

∑
j

Pi j , PB
j = P+ j =

∑
i

Pi j . (2)

When variables A and B are not statistically independent of each other,
that is, when formula (1) does not hold true, which is often the case in
many areas of empirical research (when both variables A and B are of

3
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4 Leo A. Goodman

substantive interest), the researcher analyzing the data in the 2 × 2 table
will usually be interested in measuring the nonindependence between
the two variables (A and B); and there are many different measures of
this nonindependence. (Even for the simple 2 × 2 table, there are many
such measures.) However, all of these measures of nonindependence (or
almost all of them) are deficient in an important respect. Although these
measures of nonindependence may help the researcher to determine the
magnitude of the nonindependence between the two variables (A and B),
they cannot help the researcher determine whether this nonindependence
is spurious. In other words, none (or almost none) of the usual measures
of the nonindependence between variables A and B can help the re-
searcher to determine whether the observed relationship (the noninde-
pendence) between variables A and B can be explained away by some
other variable, say, variable X, where this variable X may be unobserved
or unobservable, or latent. Is there a latent variable X that can explain
away the observed (manifest) relationship between variables A and B,
when we take into account the (unobserved) relationship that this latent
variable X may have with variable A and the (unobserved) relationship
that the latent variable may have with variable B? The use of latent class
models can help the researcher to consider such questions.

The latent variable X introduced previously can be viewed as a pos-
sible explanatory variable. It can be used at times to explain away the
observed relationship between variables A and B even when this ob-
served relationship between the two observed variables (A and B) is
statistically significant. At other times, the explanatory latent variable X
can be used to help the researcher to explain more fully (rather than to
explain away) the observed relationship between the two observed vari-
ables. With some sets of data, an appropriate latent class model might
include several latent variables as explanatory variables; and these latent
variables might be useful in helping the researcher to explain more fully
(or to explain away) the observed relationships among the set of observed
variables under consideration. Use of such latent class models can help
the researcher in many ways, as we shall see later in this exposition on the
use of latent class models and in the chapters that follow in this book on
latent class analysis.

The problem of measuring the relationship (the nonindependence)
between two (or more) observed dichotomous (or polytomous) variables
has a long history. This problem has been considered by many researchers
in many fields of inquiry at various times throughout the twentieth
century, and it is a topic that was also considered by some eminent
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scholars in the nineteenth century. The use of latent class models as a
tool to help researchers gain a deeper understanding of the observed re-
lationships among the observed dichotomous (or polytomous) variables
has, in contrast, a much shorter history in the twentieth century, but it
might be worthwhile to note here that some mathematical models that
were used earlier in some nineteenth-century work can now be viewed as
special cases of latent class models or of other kinds of latent structures.
With respect to these nineteenth-century models, we refer, in particular,
to some work by C. S. Peirce, the great philosopher and logician, who was
also an able scientist and mathematician. (In addition to the recognition
he has received for some of his other work, he is also sometimes referred
to as the “founder of pragmatism.”) Peirce introduced such a model (i.e.,
a latent structure) in order to gain further insight into the relationship
between two observed dichotomous variables in the context of measur-
ing the success of predictions (Peirce, 1884; Goodman and Kruskal, 1959).
We shall return to this example in a later section herein.

The main development of latent class models has taken place dur-
ing the last half of the twentieth-century, and the practical application of
these models by researchers in various fields of inquiry has become a real-
istic possibility only during the last quarter of the twentieth century (after
more efficient and more usable statistical methods were developed and
more general latent class models were introduced). Although the prob-
lem of measuring the relationship (the nonindependence) between two
or more observed dichotomous (or polytomous) variables has arisen and
has been considered in many fields of inquiry at various times throughout
the nineteenth and twentieth centuries, we can expect that researchers
in some of these fields of inquiry (and in other fields as well) will find
that the introduction and application of latent class models can help
them to gain further insight into the observed relationships among these
observed variables of interest. The introduction of latent class models can
insert a useful perspective into the study of the relationships among these
variables.

Thus far in this introductory section on latent class analysis we have
focused our attention on the possible use of a latent dichotomous or
polytomous variable (or a set of such latent dichotomous or polytomous
variables) as an explanatory variable (or as explanatory variables) in the
study of the relationships among a set of observed (or manifest) dichoto-
mous or polytomous variables. (In this case, our primary focus is on the
set of observed variables and on possible explanations of the observed
relationships among these variables.) We can also use the latent class
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models in those situations in which the observed dichotomous or polyto-
mous variables may be viewed as indicators or markers for an unobserved
latent variable X, where the unobserved variable is, in some sense, being
measured (in an indirect way and with measurement error) by the ob-
served variables. (In this case, our primary focus is on the unobserved
latent variable; and the observed variables are, in some sense, ascriptive
or attributive variables pertaining to the latent variable.) We can also use
models of this kind in the study of the relationships among a set of unob-
served (or latent) dichotomous or polytomous variables in the situation in
which there are observed dichotomous or polytomous variables that can
be viewed as indicators or markers for the unobserved (or latent) vari-
ables. (In this case, our primary focus is on the set of unobserved latent
variables and on the unobserved relationships among these variables.)

2. THE LATENT CLASS MODEL

Now let us consider the latent class model in the situation in which vari-
able A is an observed (or manifest) dichotomous or polytomous variable
having I classes (i = 1, 2, . . . , I), variable B is an observed (or manifest)
dichotomous or polytomous variable having J classes ( j = 1, 2, . . . , J ),
and variable X is an unobserved (or latent) dichotomous or polytomous
variable having T classes (t = 1, 2, . . . , T). Let π ABX

i jt denote the joint
probability that an observation is in class i on variable A, in class j on
variable B, and in class t on variable X; let π AX

it denote the conditional
probability that an observation is in class i on variable A, given that the
observation is in class t on variable X; let π BX

jt denote the conditional
probability that an observation is in class j on variable B, given that the
observation is in class t on variable X; and let π X

t denote the probability
that an observation is in class t on variable X. The latent class model in
this situation can be expressed simply as follows:

π ABX
i jt = π X

t π AX
it π BX

jt , for i = 1, . . . , I; j = 1, . . . , J ;

t = 1, . . . , T. (3)

This model states that variables A and B are conditionally independent
of each other, given the class level on variable X. That is,

π ABX
i jt = π ABX

i jt

/
π X

t = π AX
it π BX

jt , (4)

whereπ ABX
i jt = π ABX

i jt /π X
t is the conditional probability that an observation

is in class i on variable A and in class j on variable B, given that the
observation is in class t on variable X.
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We have presented the latent class model above for the situation in
which there are only two observed (manifest) variables (say, A and B).
This we do for expository purposes in order to consider this subject in its
simplest context. However, it should be noted that some special problems
arise when latent class models are considered in the situation in which
there are only two observed variables that do not arise in the situation
in which there are more than two observed variables. However, these
problems need not deter us here. For illustrative purposes, next we shall
consider some examples in which latent class models are applied in the
analysis of cross-classified data in the situation in which there are two
observed variables and also in the situation in which there are more than
two observed variables.

3. FIRST EXAMPLE: THE ANALYSIS OF THE RELATIONSHIP
BETWEEN TWO OBSERVED VARIABLES

To begin, let us consider the cross-classified data presented in Table 1.
These data on the relationship between parental socioeconomic status
and mental health status were analyzed earlier by various researchers
using various methods of analysis. For the purposes of the present ex-
position, we note here that the data were used earlier to illustrate both
the application of association models and the application of correlation
models in measuring the observed relationship (the nonindependence)
between the two polytomous variables in Table 1 (see, e.g., Goodman,
1979a, 1985; Gilula and Haberman, 1986). These data were also analyzed
by using a latent class model (see, e.g., Goodman, 1987), but in the present

Table 1. Cross-Classification of 1660 Subjects

Mental Health Status

Parental Socioecon. Well Mild Symptoms Mod. Symptoms Impaired
Status 1 2 3 4

High 1 64 94 58 46
2 57 94 54 40
3 57 105 65 60
4 72 141 77 94
5 36 97 54 78

Low 6 21 71 54 71

Note: This cross-classification of 1660 subjects is according to their parental socioeconomic
status and their mental health status, as shown.
Source: Srole et al. (1962).
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exposition we shall more fully examine how the analysis of latent classes
in the present context can change in a dramatic way our view of the ob-
served relationship between the two polytomous variables in Table 1 and
in other such tables. We shall also include here some simplifications and
improvements of some of the results presented in the earlier literature on
the analysis of cross-classified data of the kind presented in Table 1 and
of the kind presented in the other examples considered herein.

In Table 1, the row categories pertain to parental socioeconomic status
(from high to low), and these categories have been numbered (six row
categories numbered from 1 to 6); and the column categories pertain to
mental health status (from well to impaired), and these categories have
also been numbered (four column categories numbered from 1 to 4).
These numbers have no special numerical meaning except to indicate
which row is being referred to (and possibly where the row appears in
the ordering of the rows, if the rows are considered to be ordered) and
which column is being referred to (and possibly where the column ap-
pears in the ordering of the columns, if the columns are considered to be
ordered). With the earlier analysis of Table 1 using correlation models, it
was possible to find a set of meaningful numerical scores (different from
the integers from 1 to 6) for the row categories and a set of meaningful
numerical scores (different from the integers from 1 to 4) for the column
categories in Table 1; and the correlation calculated between the mean-
ingful scores for the row categories and the meaningful scores for the
column categories for the cross-classified data in Table 1 was also mean-
ingful. The correlation turned out to be small in magnitude, 0.16, but it
was statistically significant. Also, with the earlier analysis of Table 1 using
the association models, a somewhat similar kind of result was obtained;
however, with these models, an index of intrinsic association (rather than
an index of correlation) turns out to be meaningful, and the row scores
and column scores that are obtained with these association models also
turn out to be meaningful (but these scores differ in their meaning from
the corresponding scores obtained with the correlation models).

The association models and the correlation models view the two-way
6 × 4 table in a symmetrical way; they consider the association (or the
correlation) between the row variable and the column variable, treating
the row and column variables symmetrically. However, these models can
also be interpreted in an asymmetrical way in a situation in which we might
be interested in the possible dependence of, say, the column variable
on the row variable. Here we might be interested in, for example, the
possible dependence of mental health status on parental socioeconomic



P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

Cb417-01 CB417-Hagenaars December 4, 2001 13:42 Char Count= 0

Latent Class Analysis 9

status. With the application of the association models in this context, we
can consider the odds of being, say, in mental health status 1 rather than
2, or the odds of being in mental health status 2 rather than 3, or the
odds of being in mental health status 3 rather than 4; and we can use the
association models to describe how these odds change in a systematic way
as we consider these odds for those with different parental socioeconomic
status – how these odds change as we move from considering those whose
parental socioeconomic status is at the high level to those whose parental
socioeconomic status is at a lower level. A somewhat similar kind of result
can be obtained when the correlation models are applied to Table 1.

Both the association models and correlation models could be viewed
as somewhat improved or somewhat more sophisticated forms of an
ordinary regression analysis or an ordinary correlation analysis, or logit
analysis or loglinear analysis. They describe, in one way or another, how
the two observed variables, the row variable and the column variable,
appear to be related to each other, or they describe how one of the vari-
ables, say, the column variable, appears to be related to the other vari-
able or to be affected by the other variable. For the data in Table 1, the
apparent relationship or the apparent effect is statistically significant –
nevertheless, I continue to refer here to the apparent (or manifest) rela-
tionship or to the apparent (or manifest) effect. All of the methods just
mentioned (regression analysis, correlation analysis, logit analysis, loglin-
ear analysis, association model analysis, and correlation model analysis)
are concerned with apparent (or manifest) relationships or apparent (or
manifest) effects. With the introduction of latent class models, we can
examine whether these statistically significant apparent relationships and
apparent effects might actually be spurious.

Let us now suppose that there are, say, two kinds of families: One kind
I shall call simply the “favorably endowed,” and the other kind I shall call
the “not favorably endowed.” These can be viewed as latent categories
or latent classes or latent types of families; and we can consider the latent
variable E for “endowment” (favorable endowment or not favorable
endowment) as a latent dichotomous variable. Further suppose that this
latent variable E affects what parental socioeconomic status is attained,
and also that it is this latent variable E that affects what the mental
health status is of the individual. If this is the case, the relationships among
variable S (parental socioeconomic status), M (mental health status), and
E (endowment status) can be described by Figure 1(a), where variables
S and M are conditionally independent of each other, given the level
of variable E (i.e., given the endowment status of the family). In this
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S

E

M

(a)

S E′ M

(b)

S

E M

(c)

Figure 1. Three different views of the relationship between variables S and M and
variable E or variable E′: (a) Explanatory latent variable E viewed as antecedent to
variables S and M; (b) explanatory latent variable E′ viewed as intervening between
variables S and M; and (c) explanatory latent variable E viewed as coincident or
reciprocal with S and antecedent to M.

case, the statistically significant relationship observed between parental
socioeconomic status and mental health status is spurious.

Next let us consider a somewhat different situation. Let us now sup-
pose that there are, say, two kinds of individuals (rather than two kinds
of families): One kind I shall call the “favorably endowed,” and the other
kind I shall call the “not favorably endowed.” These can be viewed as
latent categories or latent classes or latent types of individuals; and we can
consider the latent variable E ′ for “endowment” (favorable endowment
or not favorable endowment) as a latent dichotomous variable. Further
suppose that it is this latent variable E ′ that affects what the mental health
status is of the individual, and also that it is parental socioeconomic status
that affects what the endowment status E ′ is (favorable or not favorable)
of the individual. If this is the case, the relationships among variables S,
M, and E ′ can then be described by Figure 1(b), with variable S affecting
variable E ′, and variable E ′ affecting variable M. In this case too, vari-
ables S and M are again conditionally independent of each other, given
the level of variable E ′.
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In Figure 1(a), the latent variable E is an antecedent variable, and
in Figure 1(b), the latent variable E ′ is an intervening variable. In addi-
tion to Figures 1(a) and 1(b), we might also consider Figure 1(c). Here
we again have a somewhat different situation, that is, different from the
situations described by Figures 1(a) and 1(b). Figure 1(c) can be used to
describe the situation in which variable S (parental socioeconomic status)
and latent variable E (endowment status) reciprocally affect each other
(or variables S and E are coincident with each other), and it is variable
E that affects what the mental health status is of the individual. [In other
contexts, where the column variable M might be viewed as prior to the
row variable S, we could consider Figure 1(a), and we could also con-
sider the corresponding figures obtained when the symbols S and M are
interchanged in Figure 1(b) and also in Figure 1(c).] Each of these figures
is congruent with the situation in which variables S and M are condi-
tionally independent of each other, given the level of the latent variable
(E or E ′).2 Using latent class models, we can examine whether this con-
ditional independence is congruent with the data in Table 1.

It may be worthwhile to note here that if variable E (or E ′) is viewed
as antecedent to variables S and M, as in Figure 1(a), then we could
conclude from Figure 1(a) that the observed relationship between S and
M has been explained away by variable E (or E ′); however, we could also
conclude from Figure 1(a) that the observed relationship between S and M
has been explained (rather than explained away) by variable E (or E ′) –
that is, by the relationship between variable E (or E ′) and S and the
relationship between variable E (or E ′) and M. If variable E (or E ′) is
viewed as intervening between variables S and M, as in Figure 1(b), or if
variable E (or E ′) is viewed as coincident or reciprocal with variable S and
as antecedent to variable M, as in Figure 1(c), then we could also conclude
from Figure 1(b) or Figure 1(c) that the observed relationship between
S and M can be explained (rather than explained away) by variable E
(or E ′).

For the cross-classified data in the 6 × 4 table (Table 1) considered
here, we present in Table 2 the chi-square values and the corresponding

Table 2. Models Applied to the Cross-Classified Data in Table 1

Chi-Square

No. of Latent Degrees of Goodness Likelihood
Model Classes Freedom of Fit Ratio

Independence H0 1 15 45.99 47.42
Latent class H1 2 8 2.74 2.75
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degrees of freedom that are obtained when these data are analyzed by
using the following two models: (a) the usual simple null model (H0) of sta-
tistical independence between variables S and M, and (b) the latent class
model (H1) in which the latent variable is dichotomous. [Note that the
usual null model H0 can be described by the simple formula (1) presented
earlier; and the latent class model H1 can be described by formula (3) with
T = 2, and with I = 6 and J = 4. We could also describe model H0 by for-
mula (3) with T = 1 and π X

1 = 1.] From the results presented in Table 2,
we conclude that (a) the nonindependence between variables S and M is
statistically significant, and (b) the latent class model H1 fits the observed
data extremely well.

From the results presented in Table 3, we can compare the 24 observed
frequencies in the 6 × 4 table (Table 1) with the corresponding expected
values estimated under model H0 and under model H1. From these results,
we see clearly the dramatic improvement in fit that is obtained when the
latent class model H1 is used as a replacement for the usual null model
H0 of statistical independence between the row variable and the column
variable in the two-way table. We also see that the goodness-of-fit chi-
square value is reduced by 94% (from 45.99 to 2.74) when model H0

is replaced by model H1 (with the corresponding reduction in degrees
of freedom from 15 to 8). Because model H1 is the model described in
Figures 1(a), 1(b), and 1(c), we find that the cross-classified data in
Table 1 are congruent with those figures; thus, any of the corresponding
interpretations presented earlier herein for these figures can be applied
to these data.

The interpretations of the data obtained with Figures 1(a), 1(b), and
1(c) are very different in character from the kinds of interpretations ob-
tained earlier when other statistical models (e.g., the association models,
the correlation models) were used to analyze Table 1. With Figure 1(a),
we could explain away the statistically significant relationship described
earlier with the association and/or correlation models, or we could explain
(rather than explain away) this statistically significant relationship. Also,
with Figure 1(b) and/or Figure 1(c) we can explain the statistically signif-
icant relationship. With each of these three figures, we can provide a very
different kind of explanation of the statistically significant relationship
between parental socioeconomic status and mental health status than can
be obtained by using the association and/or correlation models or any of
the other more usual statistical methods of analysis (e.g., loglinear anal-
ysis, logit analysis). In the Appendix we further comment on the latent
class analysis of Table 1.
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Table 3. Observed and Estimated Expected Frequencies under the H0
and H1 Models

Estimated Expected Frequency

Obs. Frequency Model H0 Model H1Cross-Classification

(1,1) 64 48.45 62.22
(1,2) 94 95.01 98.18
(1,3) 58 57.13 56.26
(1,4) 46 61.40 45.34
(2,1) 57 45.31 59.21
(2,2) 94 88.85 92.04
(2,3) 54 53.43 52.55
(2,4) 40 57.41 41.21
(3,1) 57 53.08 58.21
(3,2) 105 104.08 105.26
(3,3) 65 62.59 62.26
(3,4) 60 67.25 61.27
(4,1) 72 71.02 70.03
(4,2) 141 139.26 139.03
(4,3) 77 83.74 83.80
(4,4) 94 89.99 91.14
(5,1) 36 49.01 36.08
(5,2) 97 96.10 93.13
(5,3) 54 57.79 58.61
(5,4) 78 62.10 77.18
(6,1) 21 40.13 21.26
(6,2) 71 78.70 74.36
(6,3) 54 47.32 48.52
(6,4) 71 50.85 72.86

Goodness-of-fit chi square 45.99 2.74
Percentage reduction 0 94
Degrees of freedom 15 8

Note: The H0 model is the null model of independence; the H1 model is the two-class latent
class model; these models are applied to the cross-classified data in Table 1. The goodness-
of-fit chi-square value obtained by applying each of these models to the cross-classified data
is also included, and the corresponding percentage reduction in total chi-square value is
also shown.

4. SECOND EXAMPLE: THE ANALYSIS OF THE RELATIONSHIPS
AMONG FOUR OBSERVED VARIABLES

As our second example, let us next consider the analysis of the cross-
classified data presented in Table 4, a four-way table with four observed
(manifest) dichotomous variables (say, A, B, C, and D). This table de-
scribes the response patterns for respondents to four questionnaire items
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Table 4. Cross-Classification of 216 Respondents

Response

A B C D Obs. Frequency

+ + + + 42
+ + + − 23
+ + − + 6
+ + − − 25
+ − + + 6
+ − + − 24
+ − − + 7
+ − − − 38
− + + + 1
− + + − 4
− + − + 1
− + − − 6
− − + + 2
− − + − 9
− − − + 2
− − − − 20

Notes: Cross-classification is according to their response
in four different situations of role conflict (situations A ,
B, C, and D). In each of the four different situations of
role conflict, the response variable is dichotomous, and
the respondent tends either toward universalistic values
(+) or toward particularistic values (−) when responding
to the situation with which he or she is confronted.
Source: Stouffer and Toby (1951).

in which four different situations of role conflict are considered. The
respondents are cross-classified in Table 4 with respect to whether they
tend toward “universalistic” values (+) or “particularistic” values (−)
when confronted by each of the situations of role conflict.3 The cross-
classified data in Table 4 were analyzed earlier by Stouffer and Toby
(1951) and Lazarsfeld and Henry (1968) by using a particular latent class
model that had five latent classes, and by Goodman (1974b) by using
much simpler latent class models that had two latent classes and three
latent classes. In the present exposition, we shall more fully examine the
interpretation of the two-class and three-class latent class models in the
analysis of the data in Table 4 and in other such tables, and we shall
see how the use of such latent class models in the present context can
change in a dramatic way our view of the meaning and the character of
the underlying latent variable on which our attention is focused. We shall



P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

Cb417-01 CB417-Hagenaars December 4, 2001 13:42 Char Count= 0

Latent Class Analysis 15

also include here some simplifications and improvements of some of the
results presented in the earlier literature on the analysis of these data.

For expository purposes, let us now present the formula for the latent
class model in the situation in which there are four observed (or mani-
fest) dichotomous or polytomous variables (say, A, B, C, and D) and one
unobserved (or latent) dichotomous or polytomous variable (say, X):

π ABCDX
i jklt = π X

t π AX
it π BX

jt πCX
kt π DX

lt , for i = 1, . . . , I;

j = 1, . . . , J ; k = 1, . . . , K; l = 1, . . . , L; t = 1, . . . , T, (5)

where π ABCDX
i jklt is the joint probability that an observation is in class i on

variable A, in class j on variable B, in class k on variable C, in class l on
variable D, and in class t on variable X; and the other terms in formula (5)
have the same kind of meaning as the corresponding terms in formula (3).
Formula (5) states that variables A, B, C, and Dare mutually independent
of each other, given the class level on variable X. Next let us consider the
following models applied to the cross-classified data in the four-way 2 ×
2 × 2 × 2 table (Table 4): (a) the usual null model (M0) in which variables
A, B, C, and D are mutually independent of each other; (b) the latent
class model (M1) in which the latent variable is dichotomous; and (c) the
latent class model (M2) in which the latent variable is trichotomous. [Note
that model M0 can be described by formula (5) with T = 1 and π X

1 = 1;
and the latent class models M1 and M2 can be described by formula (5)
with T = 2 and T = 3, respectively. When these models are applied to the
four-way table, Table 4, we also have I = J = K = L = 2 in formula (5).]

For the cross-classified data in Table 4, we present in Table 5a the
chi-square values and the corresponding degrees of freedom that are
obtained when these data are analyzed by using models M0, M1, and M2

described previously. From the results presented in Table 5a, we see that
(a) the usual null model M0, which states that variables A, B, C, and Dare
mutually independent of each other, definitely does not fit the observed

Table 5a. Models Applied to the Cross-Classified Data in Table 4

Chi-Square

Goodness Likelihood
Model of Fit Ratio

No. of Latent
Classes

Degrees of
Freedom

Independence M0 1 11 104.11 81.08
Latent class M1 2 6 2.72 2.72
Latent class M2 3 2 0.42 0.39
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Table 5b. More Parsimonious Models Applied to the Cross-Classified Data
in Table 4

Chi-Square

Goodness Likelihood
Model of Fit Ratio

No. of Latent
Classes

Degrees of
Freedom

Latent class M2 3 2 0.42 0.39
Latent class M3 3 9 2.28 2.28
Latent class M4 3 10 2.42 2.39
Latent class M5 3 11 2.85 2.72

data in Table 4; and (b) the simple latent class model M1 that has two
latent classes fits the observed data very well indeed. When model M0 is
replaced by M1, there is a dramatic reduction of 97% in the goodness-of-fit
chi-square value (from 104.11 to 2.72), with the corresponding reduction
in degrees of freedom from 11 to 6.

As we noted earlier, in addition to the results presented in Table 5a for
the latent class model M1, which has two latent classes, we also presented
there the corresponding results obtained when the latent class model M2,
which has three latent classes, is applied to Table 4. With the three-class
latent class model M2, let us next consider in Table 5b several other latent
class models (models M3, M4, and M5) that also have three latent classes.
Table 5b presents the chi-square values and the corresponding degrees of
freedom that are obtained when these latent class models are applied to
Table 4. Here again, we obtain some dramatic results.

Comparing the results presented in Table 5b for models M3, M4, and
M5 (each of these models having three latent classes) with the corre-
sponding results presented in Table 5a for model M1 (which has two latent
classes), we find that models M3, M4, and M5 are more parsimonious than
model M1, and that these more parsimonious models fit the observed data
essentially as well as the less parsimonious model M1. (From Tables 5a and
5b, we note that there are 6 degrees of freedom corresponding to model
M1, and 9, 10, and 11 degrees of freedom corresponding to M3, M4, and
M5, respectively; and the goodness-of-fit chi-square values range from
2.28 for M3 to 2.85 for M5, with a chi-square value of 2.72 for M1.) Indeed,
again comparing corresponding results in Tables 5a and 5b, we see that the
latent class model M5 in Table 5b turns out to be as parsimonious as the
simple null model M0 of mutual independence among the four observed
variables (A, B, C, and D), with 11 degrees of freedom corresponding to
model M0 and also to model M5; and the goodness-of-fit chi-square value
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Figure 2. Explanatory latent variable V
viewed as antecedent to response (man-
ifest) variables A, B, C, and D.

obtained under M5 is also 97% less than the corresponding chi-square
value obtained under M0.

Figure 2 can be used to describe any of the latent class models (M1

to M5) in Tables 5a and 5b, where the latent variable (dichotomous or
trichotomous) is represented as variable V for “values” (universalistic
values or particularistic values). In this figure, the latent variable V is
viewed as an antecedent variable that can explain away the observed
relationships among the observed (manifest) variables A, B, C, and D, or
that can explain (rather than explain away) these observed relationships
among the observed variables. We can also view the latent variable V
as the variable of interest, and the observed variables A, B, C, and D as
indicators or markers for the latent variable. Applying the latent class
models to the observed data in Table 4, using the observed variables as
indicators or markers, we are able to describe and measure the unobserved
latent variable (i.e., the “true” latent types). We present the description
of this latent variable next for models M1 and M3 in Tables 6 and 7.

In model M1, there are two latent classes, a “universalistically inclined”
latent class and a “particularistically inclined” latent class. From Table 6,
we see that the probability of a universalistic response in situation A
is 0.993 for those who are in the universalistically inclined latent class;
and for situations B, C, and D, the corresponding probabilities are 0.940,
0.927, and 0.769, respectively. In addition, the probability of a univer-
salistic response in situation A is 0.714 for those who are in the par-
ticularistically inclined latent class; and for situations B, C, and D, the
corresponding probabilities are 0.330, 0.354, and 0.132, respectively. The
modal response is universalistic in situations A, B, C, and D for those
who are in the universalistically inclined latent class; and the modal re-
sponse is particularistic in situations B, C, and D for those who are in the
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Table 6. Distribution of Responses in Situations A ,
B, C, and D

Response Universal. Incl. Particular. Incl.

Situation A
+ 0.993 0.714
− 0.007 0.286

Situation B
+ 0.940 0.330
− 0.060 0.670

Situation C
+ 0.927 0.354
− 0.073 0.646

Situation D
+ 0.769 0.132
− 0.231 0.868

Notes: Responses are for those in the universalistically (+) in-
clined latent class and for those in the particularistically (−) in-
clined latent class, under the two-class latent class model M1
applied to the cross-classified data in Table 4. In model M1, 28%
are estimated to be in the universalistically inclined latent class,
and 72% in the particularistically inclined class.

Table 7. Distribution of Responses in Situations A , B, C, and D

Response Strict. Universal. Universal. /Particular. Incl. Strict. Particular.

Situation A
+ 1.000 0.796 0.000
− 0.000 0.204 1.000

Situation B
+ 1.000 0.420 0.000
− 0.000 0.580 1.000

Situation C
+ 1.000 0.437 0.000
− 0.000 0.563 1.000

Situation D
+ 1.000 0.175 0.000
− 0.000 0.825 1.000

Notes: Responses are for those in the strictly universalistic (+) latent class, for those in the
mixed universalistically/particularistically (+/−) inclined latent class, and for those in the
strictly particularistic (−) latent class, under the three-class latent class models M3 applied
to the cross-classified data in Table 4. In model M3, 17% are estimated to be in the strictly
universalistic latent class, 78% in the mixed universalistically/particularistically inclined
class, and 5% in the strictly particularistic class.


