MULTIUSER DETECTION

Multiuser Detection provides the first comprehensive treatment of the subject of multiuser digital communications. Multiuser detection deals with demodulation of the mutually interfering digital streams of information that occur in areas such as wireless communications, high-speed data transmission, satellite communication, digital television, and magnetic recording. The development of multiuser detection techniques is one of the most important recent advances in communications technology, and this self-contained book gives a comprehensive coverage of the design and analysis of receivers for multiaccess channels, while focusing on fundamental models and algorithms.

The author begins with a review of multiaccess communications, dealing in particular with code-division multiple-access (CDMA) channels. Background material on hypothesis testing and the effect of multiuser interference on single-user receivers are discussed next. This is followed by the design and analysis of optimum and linear multiuser detectors. Also covered in detail are topics such as decision-driven multiuser detection and noncoherent multiuser detection.

The elements of multiuser detection are clearly and systematically presented along with more advanced recent results, some of which are published here for the first time. The extensive set of references and bibliographical notes offer a comprehensive account of the state of the art in the subject.

The only prerequisites assumed are undergraduate-level probability, linear algebra, and introductory digital communications. The book contains over 300 exercises and is a suitable textbook for electrical engineering students. It is also an ideal self-study guide for practicing engineers, as well as a valuable reference volume for researchers in communications and signal processing.

Sergio Verdú is Professor of Electrical Engineering at Princeton University. His contributions to the technology of multiuser detection span his pioneering work in the early 1980s to recent results included in this text. Professor Verdú is also well known for his work on information theory, in which he explores the fundamental limits of data transmission and compression systems. Recipient of a number of awards, he is a Fellow of the IEEE and served as President of the IEEE Information Theory Society in 1997.
MULTIUSER DETECTION

SERGIO VERDÚ
To Mercedes and Ariana
CONTENTS

<table>
<thead>
<tr>
<th>List of Figures</th>
<th>Preface</th>
<th>page xi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preface</td>
<td></td>
</tr>
</tbody>
</table>

Contents

1. **MULTIACCESS COMMUNICATIONS**
 - 1.1 The Multiaccess Channel
 - 1.2 FDMA and TDMA
 - 1.3 Random Multiaccess
 - 1.4 CDMA
 - 1.5 Problems

 1
 2
 4
 4
 10

2. **CODE-DIVISION MULTIPLE-ACCESS CHANNEL**
 - 2.1 Basic Synchronous CDMA Model
 - 2.2 Basic Asynchronous CDMA Model
 - 2.3 Signature Waveforms
 - 2.3.1 Direct-Sequence Spread Spectrum
 - 2.3.2 Spreading Factor
 - 2.3.3 Signature Sequences
 - 2.3.4 Long Sequences
 - 2.3.5 Random Sequences
 - 2.3.6 Other Spread-Spectrum Formats
 - 2.4 Data Streams
 - 2.5 Modulation
 - 2.5.1 Carrier Modulation
 - 2.5.2 Nonantipodal Modulation
 - 2.6 Fading
 - 2.6.1 Frequency-Flat Fading
 - 2.6.2 Frequency-Selective Fading
 - 2.6.3 Homogeneous Fading

 19
 19
 21
 20
 26
 28
 29
 30
 32
 35
 37
 38
 38
 40
 42
 42
 45
 50
CONTENTS

2.7 Antenna Arrays 51
2.8 Background Noise 55
2.9 Discrete-Time Synchronous Models 56
 2.9.1 Matched Filter Outputs 56
 2.9.2 Orthonormal Projections 60
2.10 Discrete-Time Asynchronous Models 62
2.11 Bibliographical Notes 64
2.12 Problems 66

3 SINGLE-USER MATCHED FILTER 85
3.1 Hypothesis Testing 85
 3.1.1 Optimal Decisions 85
 3.1.2 Continuous-Time Signals in White Gaussian Noise 88
 3.1.3 Composite Hypothesis Testing 91
3.2 Optimal Receiver for the Single-User Channel 93
3.3 The O-Function 97
3.4 The Matched Filter in the CDMA Channel 104
 3.4.1 Probability of Error for Synchronous Users 105
 3.4.2 Probability of Error for Asynchronous Users 118
3.5 Asymptotic Multiuser Efficiency and Related Measures 119
3.6 Coherent Single-User Matched Filter in Rayleigh Fading 124
 3.6.1 Scalar Reception 125
 3.6.2 Diversity Reception 128
3.7 Differentially-Coherent Demodulation 130
3.8 Noncoherent Demodulation 133
3.9 Bibliographical Notes 137
3.10 Problems 139

4 OPTIMUM MULTIUSER DETECTION 154
4.1 Optimum Detector for Synchronous Channels 154
 4.1.1 Two-User Synchronous Channel 155
 4.1.2 K-User Channel 161
4.2 Optimum Detector for Asynchronous Channels 166
CONTENTS

4.3 Minimum Error Probability in the Synchronous Channel 176
 4.3.1 Two-User Channel 176
 4.3.2 K-User Synchronous Channel 186
4.4 K-User Optimum Asymptotic Efficiency and Near-Far Resistance 195
4.5 Minimum Error Probability in the Asynchronous Channel 202
4.6 Performance Analysis in Rayleigh Fading 206
4.7 Optimum Noncoherent Multiuser Detection 209
4.8 Bibliographical Notes 210
4.9 Problems 213

5 DECORRELATING DETECTOR 234
 5.1 The Decorrelating Detector in the Synchronous Channel 234
 5.2 The Decorrelating Detector in the Asynchronous Channel 243
 5.3 Truncated-Window Decorrelating Detector 246
 5.4 Approximate Decorrelator 248
 5.5 Performance Analysis: Synchronous Case 249
 5.6 Performance Analysis: Asynchronous Case 256
 5.7 Coherent Decorrelator in the Presence of Fading 258
 5.7.1 Frequency-Flat Fading 259
 5.7.2 Homogeneous Fading 260
 5.7.3 Diversity Reception 261
 5.8 Differentially-Coherent Decorrelation 263
 5.9 Decorrelation for Nonlinear Modulation 265
 5.10 Bibliographical Notes 269
 5.11 Problems 272

6 NONDECORRELATING LINEAR MULTIUSER DETECTION 288
 6.1 Optimum Linear Multiuser Detection 288
 6.2 Minimum Mean-Square Error (MMSE) Linear Multiuser Detection 291
 6.3 Performance of MMSE Linear Multiuser Detection 299
 6.4 Adaptive MMSE Linear Multiuser Detection 306
CONTENTS

6.5 Canonical Representation of Linear Multiuser Detectors 314
6.6 Blind MMSE Multiuser Detection 318
 6.6.1 Gradient Descent Algorithm 318
 6.6.2 Signature Waveform Mismatch 321
6.7 Bibliographical Notes 325
6.8 Problems 329

7 DECISION-DRIVEN MULTIUSER DETECTORS 344
 7.1 Successive Cancellation 344
 7.2 Performance Analysis of Successive Cancellation 351
 7.3 Multistage Detection 361
 7.3.1 Conventional First Stage 361
 7.3.2 Decorrelating First Stage 363
 7.4 Continuous-Time Tentative Decisions 369
 7.5 Decision-Feedback Multiuser Detection 370
 7.5.1 Synchronous Decorrelating Decision-Feedback 371
 7.5.2 Synchronous MMSE Decision-Feedback 377
 7.5.3 Asynchronous Decision-Feedback 382
 7.6 Bibliographical Notes 384
 7.7 Problems 387

Bibliography 395
Author Index 431
Subject Index 437
LIST OF FIGURES

1.1 Multiaccess communication 2
1.2 Frequency-Division Multiple Access 3
1.3 Time-Division Multiple Access showing guard times between slots 3
1.4 Orthogonal signals assigned to two users 5
1.5 Fourier transforms (magnitude, $f > 0$) of waveforms in Figure 1.4 5
1.6 Synchronous antipodal modulation of orthogonal signals 6
1.7 Signature waveforms in TDMA 7
1.8 Successive decoding 10
1.9 Two-user asynchronous CDMA 11
1.10 Walsh functions of length 16 12
1.11 On–off signature waveform 13
1.12 Raised cosine pulse with $\alpha = 0.5$ 16
2.1 Offsets modeling asynchronism 21
2.2 Bit epochs for $K = 3$, $M = 1$ 22
2.3 Intersymbol interference as an asynchronous CDMA channel 24
2.4 Definition of asynchronous crosscorrelations ($k < l$) 25
2.5 Direct-sequence spread-spectrum signature waveform with $N = 63$ in the time and frequency domains (rectangular chip waveform) 27
LIST OF FIGURES

2.6 Direct-sequence spread-spectrum signature waveform with $N = 63$ in the time and frequency domains (sinc chip waveform) 27

2.7 Noiseless sum of six modulated direct-sequence waveforms with $N = 63$ 28

2.8 Generation of pseudonoise sequence with a feedback shift register 30

2.9 Direct-sequence spread-spectrum system with $N_0 = 63$ and $N = 7$ 31

2.10 Locus of crosscorrelations (ρ_{12}, ρ_{21}) for $N = 128$ (left) and $N = 512$ (right) with rectangular chips 34

2.11 Frequency-hopping spread-spectrum signature waveform, $N = 7$ 36

2.12 Probability density functions: (a) Rayleigh; (b) Rice ($d = 2$); (c) Nakagami ($d = 3$); (d) log-normal ($\sigma_p = 10$) 43

2.13 Two-element array 52

2.14 Two-element array radiation patterns with equal gains and phase offsets of $\varphi = \pi$ (left) and $\varphi = \pi/2$ (right) 53

2.15 Discrete-time K-dimensional vector of matched filter outputs 56

2.16 K-dimensional channel of matched filter outputs for asynchronous CDMA channel 63

2.17 Direct-sequence signature waveforms with $N = 3$ 67

2.18 TDMA signals subject to multipath. $K = 2$, $\alpha_1 = -0.5$, $\alpha_2 = 2/3$, $\gamma = 3/8$ 74

2.19 Six-element antenna array 78

3.1 Cauchy vs. Gaussian binary hypothesis test 87

3.2 Conditional distributions of Y given $b = -1$ and $b = +1$ 95

3.3 Linear plot of $Q(x)$ for $x > 0$ 98

3.4 Log-linear plot of $Q(x)$ and its bounds: (a) (3.34), (b) (3.35), (c) (3.37), and (3.38) 103

3.5 Bank of single-user matched filters 104
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>Bank of single-user matched filters ($K = 2$)</td>
<td>106</td>
</tr>
<tr>
<td>3.7</td>
<td>Output of matched filter for user 1 with one interfering user</td>
<td>107</td>
</tr>
<tr>
<td>3.8</td>
<td>Bit-error-rate of single-user matched filter with two synchronous users and $\rho = 0.2$</td>
<td>109</td>
</tr>
<tr>
<td>3.9</td>
<td>Signal-to-noise ratios necessary to achieve bit-error-rate not higher than 3×10^{-5} for both users, parametrized by ρ</td>
<td>109</td>
</tr>
<tr>
<td>3.10</td>
<td>Decision regions in the two-dimensional space of matched filter outputs</td>
<td>111</td>
</tr>
<tr>
<td>3.11</td>
<td>Decision regions in the one-dimensional space of matched filter output</td>
<td>111</td>
</tr>
<tr>
<td>3.12</td>
<td>Decision regions of matched filter detector (orthogonal space); $A_1 = A_2$</td>
<td>112</td>
</tr>
<tr>
<td>3.13</td>
<td>Decision regions of matched filter detector (orthogonal space); $A_1 = 6A_2$</td>
<td>113</td>
</tr>
<tr>
<td>3.14</td>
<td>Bit-error-rate of the single-user matched filter with ten equal-energy users and identical crosscorrelations $\rho_{id} = 0.08$; (a) exact, (b) Gaussian approximation</td>
<td>115</td>
</tr>
<tr>
<td>3.15</td>
<td>Bit-error-rate of the single-user matched filter with fourteen equal-energy users and identical crosscorrelations $\rho_{id} = 0.08$; (a) exact, (b) Gaussian approximation</td>
<td>115</td>
</tr>
<tr>
<td>3.16</td>
<td>Asymptotic multiuser efficiency of conventional detector as a function of the amplitude of the interferer; $\rho = 0.2$ (linear plot)</td>
<td>123</td>
</tr>
<tr>
<td>3.17</td>
<td>Asymptotic multiuser efficiency of conventional detector as a function of the amplitude of the interferer; $\rho = 0.2$ (log–log plot)</td>
<td>124</td>
</tr>
<tr>
<td>4.1</td>
<td>Decision regions of jointly optimum detector for $A_1 = A_2$, $\rho = 0.2$.</td>
<td>157</td>
</tr>
<tr>
<td>4.2</td>
<td>Decision regions of jointly optimum detector for $A_1 = 6A_2$, $\rho = 0.2$.</td>
<td>157</td>
</tr>
<tr>
<td>4.3</td>
<td>Maximum-likelihood detection for user 1 with one synchronous interferer</td>
<td>159</td>
</tr>
<tr>
<td>4.4</td>
<td>Minimum bit-error-rate detector for user 1 with one synchronous interferer</td>
<td>160</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

4.5 Decision regions of minimum bit-error-rate detector for user 1. $A_1 = A_2$, $\rho = 0.2$ \[p.161\]

4.6 Directed graph for maximum-likelihood detection in the special case of four users with unit amplitudes \[p.164\]

4.7 Suboptimality of one-shot approach in asynchronous channels \[p.166\]

4.8 Trellis diagram for two asynchronous users; $M = 1$ \[p.169\]

4.9 Trellis diagram for three-user asynchronous channel \[p.172\]

4.10 Optimum multiuser detector for asynchronous CDMA \[p.173\]

4.11 Bit-error-rate in a two-user channel with $\rho = 0.4$, $A_1 = A_2$: (a) single-user matched filter, (b) maximum-likelihood upper bound to minimum bit-error-rate, (c) genie lower bound to minimum bit-error-rate \[p.182\]

4.12 Optimum and single-user asymptotic multiuser efficiencies for two synchronous users \[p.184\]

4.13 Optimum asymptotic multiuser efficiency as a function of $|\rho|$ and relative amplitude of interferer \[p.185\]

4.14 Signal-to-noise ratios necessary to achieve optimum bit-error-rate not higher than 3×10^{-3} for both users \[p.185\]

4.15 If e is decomposable into e' and e'', and $b - 2e$ is the most likely vector, then both $b - 2e'$ and $b - 2e''$ are more likely than b \[p.192\]

4.16 Bit-error-rate in a fifteen-user channel with equal-power users and $\rho_{ii} = 0.09$: (a) conventional, (b) maximum-likelihood upper bound to minimum bit-error-rate, (c) lower bound to minimum bit-error-rate \[p.194\]

4.17 Optimum and single-user matched-filter asymptotic multiuser efficiencies as functions of the amplitude of the interferer \[p.204\]

4.18 Computation of the a posteriori probability $P[b_1 = +1|y]$ from the a priori probability $\pi_1 = P[b_1 = +1]$ \[p.214\]

4.19 Trellis for a 4-user channel using the decomposition in Problem 4.15 \[p.218\]
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.20</td>
<td>Markov chain modeling data stream in Problem 4.53</td>
<td>230</td>
</tr>
<tr>
<td>5.1</td>
<td>Decorrelating detector for the synchronous channel</td>
<td>235</td>
</tr>
<tr>
<td>5.2</td>
<td>Modified matched filter bank for decorrelation</td>
<td>237</td>
</tr>
<tr>
<td>5.3</td>
<td>Decorrelating receiver for two synchronous users</td>
<td>238</td>
</tr>
<tr>
<td>5.4</td>
<td>Decision regions of the two-user decorrelating detector; $A_1 = A_2$</td>
<td>238</td>
</tr>
<tr>
<td>5.5</td>
<td>Asynchronous decorrelating detector</td>
<td>244</td>
</tr>
<tr>
<td>5.6</td>
<td>One-shot approach to demodulation in asynchronous two-user channel</td>
<td>247</td>
</tr>
<tr>
<td>5.7</td>
<td>Bit-error-rate comparison of decorrelator and single-user matched filter with two users and $\rho = 0.75$</td>
<td>251</td>
</tr>
<tr>
<td>5.8</td>
<td>Asymptotic multiuser efficiencies for two synchronous users</td>
<td>252</td>
</tr>
<tr>
<td>5.9</td>
<td>Signal-to-noise ratios necessary to achieve bit-error-rate not higher than 3×10^{-5} for both users. Shown for $</td>
<td>\rho</td>
</tr>
<tr>
<td>5.10</td>
<td>Signal-to-noise ratios necessary to achieve bit-error-rate not higher than 3×10^{-5} for both users. Shown for $</td>
<td>\rho</td>
</tr>
<tr>
<td>5.11</td>
<td>Optimality of decorrelating detector near–far resistance</td>
<td>254</td>
</tr>
<tr>
<td>5.12</td>
<td>Bit-error-rate of decorrelating detector and single-user matched filter detector. Five equal-energy interferers</td>
<td>258</td>
</tr>
<tr>
<td>5.13</td>
<td>Signature waveforms for Problem 5.20</td>
<td>278</td>
</tr>
<tr>
<td>5.14</td>
<td>Signature waveforms for Problem 5.22</td>
<td>279</td>
</tr>
<tr>
<td>6.1</td>
<td>Linear detector that maximizes asymptotic efficiency for the two-user synchronous channel</td>
<td>290</td>
</tr>
<tr>
<td>6.2</td>
<td>Asymptotic multiuser efficiencies for two synchronous users</td>
<td>290</td>
</tr>
<tr>
<td>6.3</td>
<td>MMSE linear detector for the synchronous channel</td>
<td>295</td>
</tr>
<tr>
<td>6.4</td>
<td>MMSE linear receiver for two synchronous users</td>
<td>296</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

6.5 Bit-error-rate with two users and crosscorrelation $\rho = 0.8$: (a) single-user matched filter; (b) decorrelator; (c) MMSE; (d) minimum (upper bound); (e) minimum (lower bound) 300

6.6 Bit-error-rate with eight equal-power users and identical crosscorrelations $\rho_{kl} = 0.1$ 301

6.7 Bit-error-rate with 100 equal-power users and random direct sequence signatures with $N = 1,000$ 306

6.8 Decorrelating detector in canonical form 316

6.9 Blind adaptive multiuser detector 320

6.10 Complete desired-signal cancellation with mismatch 322

6.11 Multiple-input multiple-output channel 335

7.1 Successive cancellation for two synchronous users 346

7.2 Equivalent implementation of successive cancellation for two synchronous users 346

7.3 Decision regions of successive cancellation with $A_1 = 1$ and $A_2 = 1$ 347

7.4 Decision regions of successive cancellation with $A_1 = 0.5$ and $A_2 = 1$ 347

7.5 Decision regions of successive cancellation with $A_1 = 2.5$ and $A_2 = 1$ 347

7.6 Decision regions of maximum-likelihood detection with $A_1 = A_2 = 1$ 348

7.7 Sliding window of decisions for demodulation of user 1 349

7.8 $H_f(b, b')$ is the shaded ξ-square normal to $d(b, b')$ and closest to $S(b)$ in $D(b')$ 353

7.9 Asymptotic multiuser efficiencies for two synchronous users; $|\rho| = 0.6$ 357

7.10 Modified successive cancellation for two synchronous users 358

7.11 Near–far resistance for two synchronous users as a function of crosscorrelation 358
LIST OF FIGURES

7.12 Signal-to-noise ratios necessary for successive cancellation to achieve bit-error-rate not higher than 3×10^{-5} for both users. Shown for $|\rho| = 0.1, 0.3, 0.5$ 359

7.13 Signal-to-noise ratios necessary for successive cancellation to achieve bit-error-rate not higher than 3×10^{-5} for both users. Shown for $|\rho| = 0.8, 0.9$, and compared with the optimal regions (dashed) 359

7.14 Two-stage detector for two synchronous users 361

7.15 Decision regions of two-stage detector with $A_1 = 1$, $A_2 = 1$ 362

7.16 Three-stage detector for two synchronous users 362

7.17 Decision regions of m-stage detector with shaded regions leading to limit-cycle decisions 363

7.18 Two-stage detector with decorrelating first stage 364

7.19 Decision regions of multistage detector with decorrelating first stage 364

7.20 Decision regions of m-stage detector (decorrelating first stage) with shaded regions leading to limit-cycle decisions 365

7.21 Asymptotic multiuser efficiencies for two synchronous users; $|\rho| = 0.6$ 367

7.22 Near-far resistance of two-stage detector with conventional and decorrelating first stage for two synchronous users 368

7.23 Signal-to-noise ratios necessary for two-stage detector with decorrelating first stage to achieve bit-error-rate not higher than 3×10^{-5} for both users 369

7.24 Average per-user power penalty for random signature sequences 377

7.25 Two-user synchronous decision-feedback detector 381

7.26 Asynchronous decision-feedback multiuser detector 383

7.27 Comparison of requirements for multiuser detectors 384

7.28 Direct-sequence signature waveforms with $N = 3$ 389
PREFACE

He that will not apply new remedies
must expect new evils:
for time is the greatest innovator.

Francis Bacon (1561–1626)

Research and development of digital communications systems is undergoing a revolution fueled by rapid advances in technology. With the ever-growing sophistication of signal processing and computation, advances in communication theory have an increasing potential to bridge the gap between practically feasible channel utilization and the fundamental information theoretic limits on channel capacity. If conquering channel capacity is the manifest destiny of communications technology, the need for efficient use of channel bandwidth and transmission power is felt most acutely in wireless communication, where the exponentially growing demand for data rate must be accommodated in a finite segment of the radio spectrum. To add to the challenge, information is transmitted not by a single source but by several uncoordinated, bursty, and geographically separated sources.

Multiuser Detection deals with the demodulation of mutually interfering digital streams of information. Cellular telephony, satellite communication, high-speed data transmission lines, digital radio/television broadcasting, fixed wireless local loops, and multitrack magnetic recording are some of the communication systems subject to multiaccess interference. The superposition of transmitted signals may originate from nonideal characteristics of the transmission medium, or it may be an integral part of the multiplexing method as in the case of Code-Division Multiple-Access (CDMA). Multiuser detection (also known as cochannel interference suppression, multiuser demodulation, interference cancellation, etc.) exploits the considerable structure of the multiuser interference in order to increase the efficiency with which channel resources are employed.
PREFACE

Although isolated generalizations of digital communication models to multi-input multi-output channels had taken place as early as the 1960s, it was not until the mid 1980s that multiuser detection started developing as a cohesive body of analytical results that took into account the specific features of multiuser channels. Since then, the number of researchers working within this discipline has rapidly multiplied, to the point where it is now one of the most active and vibrant branches of digital communications. The extensive set of references collected in this book, although not pretending to be comprehensive in any way, gives evidence of the level of activity in multiuser detection in the past few years. The bibliographical notes at the end of each chapter provide an account of the development of the main results as well as a snapshot of the current state of the art. I can only hope that that part of the book will become quickly obsolete in view of the speed at which the field is currently evolving.

While aiming for a fairly comprehensive coverage of the design and analysis of receivers for multiaccess channels, my goal has been to distill the elements of multiuser detection in the simplest setting that brings out the key concepts. A fertile ground for geometrical intuition, the linearly modulated synchronous multiuser channel proves to be a garden of Euclidean delights. Borrowing from the tradition in multiuser information theory, most of the main ideas are first introduced in the two-user channel, which emerges as a powerful pedagogical tool.

Chapter 1 gives a brief introduction to the main approaches in multiaccess communications. Chapter 2 introduces the basic channel models used throughout the book. The main paradigm is the Code-Division Multiple-Access channel, in which each user modulates its own signature waveform. This channel is general enough to encompass orthogonal and non-orthogonal multiplexing methods, with or without spread-spectrum signaling. Chapter 3 covers background material on hypothesis testing and single-user detection and analyzes the effects of multiaccess interference on the single-user receiver. Chapter 4 is devoted to the design and analysis of optimum multiuser detectors. Linear signal processing for multiuser detection is studied in Chapters 5 and 6, with and without the constraint of complete multiuser interference suppression, respectively. Adaptive linear multiuser detection is covered in Chapter 6. Chapter 7 deals with nonlinear multiuser detectors that use decisions on the interfering digital streams to mitigate their effect.

Whether it is used as a textbook, self-study tool, or research reference, the set of over 300 problems comprises an essential component of this book. They range from simple drill exercises to research results that complement
PREFACE

the theory expounded in the text. I hope the reader will draw some sense of accomplishment from solving them.

No prerequisites are assumed beyond undergraduate-level probability, linear algebra, and an introductory course on communications. At Princeton, I have used this text to teach a one-semester course on Multiuser Detection to first- and second-year graduate students with diverse backgrounds. Although previous or concurrent exposure to a conventional detection and estimation course may be beneficial, Chapter 3 gives a self-contained presentation of the required material. A typical “single-user” digital communications course covering the fundamentals of equalization is not required either. In fact, it is my contention that (synchronous) multiaccess channels provide an easier setting for learning many of the fundamentals of equalization in digital communications than the conventional single-user intersymbol interference channel.

The text contains substantial material that can be tailored to serve as the core of various master’s and doctoral courses on multiuser communication. In addition, the book can be used as a self-study guide for practicing engineers and as a reference volume for academic and industrial researchers in communications and signal processing.

SPECIAL THANKS

EZIO BIGJERI • GIUSEPPE CAIRE • BRAD DICKINSON • PHIL MEYLER
JIM FREEBERSYSER • MIKE HONIG • VISI LUCAS • NARAYAN MANDAYAM
ANDY MCKELLIPS • U. MADHOW • TARAGAY OSKIPER • JAY PLETT
LAURIE NELSON • CARL NUZMAN • MERCEDES PARATJE • VINCE POOR
CRAIG RUSHFORTH • SHLOMO SHAMAI • JOHN SMEE • XIAODONG WANG
RAJESH SUNDARESAN • MINERVA YEUNG • MICHELLE YOUNG • BIN YU

A companion web site for this book can be found at
http://www.cam.org/59/0521593735.html