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1

Plausible reasoning

The actual science of logic is conversant at present only with things either
certain, impossible, or entirelydoubtful, none of which (fortunately) we
have to reason on. Therefore the true logic for this world is the calculus
of Probabilities, which takes account of the magnitude of the probability
which is, or ought to be, in a reasonable man’s mind.

James Clerk Maxwell (1850)

Suppose somedark night a policemanwalks downa street, apparently deserted. Suddenly he
hears a burglar alarm, looks across the street, and sees a jewelry store with a brokenwindow.
Then a gentlemanwearing amask comes crawling out through the brokenwindow, carrying
a bag which turns out to be full of expensive jewelry. The policeman doesn’t hesitate at all
in deciding that this gentleman is dishonest. But by what reasoning process does he arrive
at this conclusion? Let us first take a leisurely look at the general nature of such problems.

1.1 Deductive and plausible reasoning

A moment’s thought makes it clear that our policeman’s conclusion was not a logical
deduction from the evidence; for there may have been a perfectly innocent explanation
for everything. It might be, for example, that this gentleman was the owner of the jewelry
store and he was coming home from a masquerade party, and didn’t have the key with him.
However, just as he walked by his store, a passing truck threw a stone through the window,
and he was only protecting his own property.
Now, while the policeman’s reasoning process was not logical deduction, we will grant

that it had a certain degree of validity. The evidence did notmake the gentleman’s dishonesty
certain, but it did make it extremelyplausible. This is an example of a kind of reasoning
in which we have all become more or less proficient, necessarily, long before studying
mathematical theories. We are hardly able to get through one waking hour without facing
some situation (e.g. will it rain or won’t it?) where we do not have enough information to
permit deductive reasoning; but still we must decide immediately what to do.
In spite of its familiarity, the formation of plausible conclusions is a very subtle process.

Although history records discussions of it extending over 24 centuries, probably nobody has

3



4 Part 1 Principles and elementary applications

ever produced an analysis of the process which anyone else finds completely satisfactory.
In this work we will be able to report some useful and encouraging new progress, in which
conflicting intuitive judgments are replaced by definite theorems, andad hocprocedures
are replaced by rules that are determined uniquely by some very elementary – and nearly
inescapable – criteria of rationality.
All discussions of these questions start by giving examples of the contrast between

deductive reasoning and plausible reasoning. As is generally credited to theOrganonof
Aristotle (fourth centurybc)1 deductive reasoning (apodeixis) can be analyzed ultimately
into the repeated application of two strong syllogisms:

if A is true, thenB is true

A is true (1.1)

therefore,B is true,

and its inverse:
if A is true, thenB is true

B is false (1.2)

therefore,A is false.

This is the kind of reasoning we would like to use all the time; but, as noted, in almost all
the situations confronting us we do not have the right kind of information to allow this kind
of reasoning. We fall back on weaker syllogisms (epagoge):

if A is true, thenB is true

B is true (1.3)

therefore,A becomes more plausible.

The evidence does not prove thatA is true, but verification of one of its consequences does
give us more confidence inA. For example, let

A ≡ it will start to rain by 10am at the latest;

B ≡ the sky will become cloudy before 10am.

Observing clouds at 9:45am does not give us a logical certainty that the rain will follow;
nevertheless our common sense, obeying the weak syllogism, may induce us to change our
plans and behaveas ifwe believed that it will, if those clouds are sufficiently dark.

This example shows also that the major premise, ‘ifA thenB’ expressesB only as a
logical consequence ofA; and not necessarily a causal physical consequence, which could
be effective only at a later time. The rain at 10am is not the physical cause of the clouds at

1 Today, several different views are held about the exact nature of Aristotle’s contribution. Such issues are irrelevant to our present
purpose, but the interested reader may find an extensive discussion of them in Lukasiewicz (1957).



1 Plausible reasoning 5

9:45am. Nevertheless, the proper logical connection is not in the uncertain causal direction
(clouds=⇒ rain), but rather (rain=⇒ clouds), which is certain, although noncausal.

We emphasize at the outset that we are concerned here withlogicalconnections, because
some discussions and applications of inference have fallen into serious error through failure
to see the distinction between logical implication and physical causation. The distinction
is analyzed in some depth by Simon and Rescher (1966), who note that all attempts to
interpret implication as expressing physical causation founder on the lack of contraposition
expressed by the second syllogism (1.2). That is, if we tried to interpret the major premise
as ‘A is the physical cause ofB’, then we would hardly be able to accept that ‘not-B is
the physical cause of not-A’. In Chapter 3 we shall see that attempts to interpret plausible
inferences in terms of physical causation fare no better.
Another weak syllogism, still using the same major premise, is

If A is true, thenB is true

A is false (1.4)

therefore,B becomes less plausible.

In this case, the evidence does not prove thatB is false; but one of the possible reasons for
its being true has been eliminated, and so we feel less confident aboutB. The reasoning of a
scientist, by which he accepts or rejectshis theories, consists almost entirely of syllogisms
of the second and third kind.
Now, the reasoning of our policeman was not even of the above types. It is best described

by a still weaker syllogism:

If A is true, thenB becomes more plausible

B is true (1.5)

therefore,A becomes more plausible.

But in spite of the apparent weakness of this argument, when stated abstractly in terms ofA
andB, we recognize that the policeman’s conclusion has a very strong convincing power.
There is something which makes us believe that, in this particular case, his argument had
almost the power of deductive reasoning.
These examples show that the brain, in doing plausible reasoning, not only decides

whether something becomesmore plausible or less plausible, but that it evaluates thedegree
of plausibility in some way. The plausibility for rain by 10am depends very much on the
darkness of those clouds at 9:45. And the brain also makes use of old informationas well
as the specific new data of the problem; in deciding what to do we try to recall our past
experience with clouds and rain, and what the weatherman predicted last night.
To illustrate that the policeman was also making use of the past experience of policemen

in general, we have only to change that experience. Suppose that events like these happened
several times every night to every policeman – and that in every case the gentleman turned
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out to be completely innocent. Very soon, policemen would learn to ignore such trivial
things.
Thus, in our reasoningwe depend verymuch onprior informationto help us in evaluating

the degree of plausibility in a new problem. This reasoning process goes on unconsciously,
almost instantaneously, and we conceal how complicated it really is by calling itcommon
sense.

The mathematician George P´olya (1945, 1954) wrote three books about plausible rea-
soning, pointing out a wealth of interesting examples and showing that there are definite
rules by which we do plausible reasoning (although in his work they remain in qualitative
form). The above weak syllogisms appear in his third volume. The reader is strongly urged
to consult P´olya’s exposition, which was the original source ofmany of the ideas underlying
the present work. We show below how P´olya’s principles may be made quantitative, with
resulting useful applications.
Evidently, the deductive reasoning described above has the property that we can go

through long chains of reasoning of the type (1.1) and (1.2) and the conclusions have just as
much certainty as the premises.With the other kinds of reasoning, (1.3)–(1.5), the reliability
of the conclusion changes as we go through several stages. But in their quantitative formwe
shall find that in many cases our conclusions can still approach the certainty of deductive
reasoning (as the example of the policeman leads us to expect). P´olya showed that even
a pure mathematician actually uses these weaker forms of reasoning most of the time. Of
course, on publishing a new theorem, the mathematician will try very hard to invent an
argument which uses only the first kind; but the reasoning process which led to the theorem
in the first place almost always involves one of the weaker forms (based, for example, on
following up conjectures suggested by analogies). The same idea is expressed in a remark
of S. Banach (quoted by S. Ulam, 1957):

Good mathematicians see analogies between theorems; great mathematicians see analogies between
analogies.

As a first orientation, then, let us note some very suggestive analogies to another field –
which is itself based, in the last analysis, on plausible reasoning.

1.2 Analogies with physical theories

In physics, we learn quickly that the world is too complicated for us to analyze it all at once.
We can make progress only if we dissect it into little pieces and study them separately.
Sometimes, we can invent a mathematical model which reproduces several features of one
of these pieces, and whenever this happens we feel that progress has been made. These
models are calledphysical theories. As knowledge advances, we are able to invent better
andbettermodels,which reproducemoreandmore featuresof the realworld,moreandmore
accurately. Nobody knows whether there is some natural end to this process, or whether it
will go on indefinitely.
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In trying to understand common sense, we shall take a similar course. We won’t try
to understand it all at once, but we shall feel that progress has been made if we are
able to construct idealized mathematical models which reproduce a few of its features.
We expect that any model we are now able to construct will be replaced by more com-
plete ones in the future, and we do not know whether there is any natural end to this
process.
The analogy with physical theories is deeper than a mere analogy of method. Often, the

things which are most familiar to us turn out to be the hardest to understand. Phenomena
whose very existence is unknown to the vast majority of the human race (such as the differ-
ence in ultraviolet spectra of iron and nickel) can be explained in exhaustive mathematical
detail – but all of modern science is practically helpless when faced with the complications
of such a commonplace fact as growth of a blade of grass. Accordingly, we must not expect
toomuch of our models; wemust be prepared to find that some of themost familiar features
of mental activity may be ones for which we have the greatest difficulty in constructing any
adequate model.
There are many more analogies. In physics we are accustomed to finding that any ad-

vance in knowledge leads to consequences of great practical value, but of an unpredictable
nature. R¨ontgen’s discovery of X-rays led to important new possibilities of medical diag-
nosis; Maxwell’s discovery of one more term in the equation for curlH led to practically
instantaneous communication all over the earth.
Our mathematical models for common sense also exhibit this feature of practical useful-

ness. Any successful model, even though it may reproduce only a few features of common
sense, will prove to be a powerful extension of common sense in some field of application.
Within this field, it enables us to solve problems of inference which are so involved in
complicated detail that we would never attempt to solve them without its help.

1.3 The thinking computer

Models have practical uses of a quite different type. Many people are fond of saying, ‘They
will never make a machine to replace the human mind – it does many things which no
machine could ever do.’ A beautiful answer to this was given by J. von Neumann in a talk
on computers given in Princeton in 1948, which the writer was privileged to attend. In reply
to the canonical question from the audience (‘But of course, a mere machine can’t really
think, can it?’), he said:

You insist that there is something a machine cannot do. If you will tell me precisely what it is that a
machine cannot do, then I can always make a machine which will do just that!

In principle, the only operations which a machine cannot perform for us are those which
we cannot describe in detail, or which could not be completed in a finite number of steps.
Of course, some will conjure up images of G¨odel incompleteness, undecidability, Turing
machines which never stop, etc. But to answer all such doubts we need only point to the
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existence of the human brain, whichdoesit. Just as von Neumann indicated, the only
real limitations on making ‘machines which think’ are our own limitations in not knowing
exactly what ‘thinking’ consists of.
But in our study of common sense we shall be led to some very explicit ideas about

the mechanism of thinking. Every time we can construct a mathematical model which
reproduces a part of common sense by prescribing a definite set of operations, this shows
us how to ‘build a machine’, (i.e. write a computer program) which operates on incomplete
information and, by applying quantitative versions of the above weak syllogisms, does
plausible reasoning instead of deductive reasoning.
Indeed, the development of such computer software for certain specialized problems of

inference is oneof themostactive anduseful current trends in thisfield.One kind of problem
thus dealt with might be: given a mass of data, comprising 10 000 separate observations,
determine in the light of these data and whatever prior information is at hand, the relative
plausibilities of 100 different possible hypotheses about the causes at work.
Our unaided common sense might be adequate for deciding between two hypotheses

whose consequences are very different; but, in dealing with 100 hypotheses which are not
very different, wewould be helplesswithout a computerandawell-developedmathematical
theory that shows us how to program it. That is, what determines, in the policeman’s
syllogism (1.5), whether the plausibility forA increases by a large amount, raising it almost
to certainty; or only a negligibly small amount, making the dataB almost irrelevant? The
object of the present work is to develop themathematical theory which answers such
questions, in the greatest depth and generality now possible.
While we expect a mathematical theory to be useful in programming computers, the

idea of a thinking computer is also helpful psychologicallyin developing the mathematical
theory. The question of the reasoning process used by actual human brains is charged with
emotion and grotesque misunderstandings. It is hardly possible to say anything about this
without becoming involved in debates over issues that are not only undecidable in our
present state of knowledge, but are irrelevant to our purpose here.
Obviously, the operation of real human brains is so complicated that we can make no

pretense of explaining its mysteries; and in any event we are not trying to explain, much less
reproduce, all the aberrations and inconsistencies of human brains. That is an interesting and
important subject; but it is not the subject we are studying here. Our topic is thenormative
principles of logic, and not the principles of psychology or neurophysiology.

To emphasize this, instead of asking, ‘How can we build a mathematical model of human
common sense?’, let us ask, ‘How could we build a machine which would carry out useful
plausible reasoning, following clearly defined principles expressing an idealized common
sense?’

1.4 Introducing the robot

In order to direct attention to constructive things and away from controversial irrelevancies,
we shall invent an imaginary being. Its brain is to be designedby us, so that it reasons
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according to certain definite rules. These rules will be deduced from simple desiderata
which, it appears to us, would be desirable in human brains; i.e. we think that a rational
person, on discovering that they were violating one of these desiderata, would wish to revise
their thinking.
In principle, we are free to adopt any rules we please; that is our way ofdefiningwhich

robot we shall study. Comparing its reasoning with yours, if you find no resemblance you
are in turn free to reject our robot and design a different one more to your liking. But if you
find a very strong resemblance, and decide that you want and trust this robot to help you in
your own problems of inference, then that will be an accomplishment of the theory, not a
premise.
Our robot is going to reason about propositions. As already indicated above, we shall

denote various propositions by italicized capital letters,{A, B,C,etc.}, and for the time
being we must require that any proposition used must have, to the robot, an unambiguous
meaning andmust be of the simple, definite logical type thatmust be either true or false. That
is, until otherwise stated, we shall be concerned only with two-valued logic, or Aristotelian
logic. We do not require that the truth or falsity of such an ‘Aristotelian proposition’ be
ascertainable by any feasible investigation; indeed, our inability to do this is usually just
the reason why we need the robot’s help. For example, the writer personally considers both
of the following propositions to be true:

A ≡ Beethoven and Berlioz never met.

B ≡ Beethoven’s music has a better sustained quality than that of

Berlioz, although Berlioz at his best is the equal of anybody.

PropositionB is not a permissible one for our robot to think about at present, whereas
propositionA is, although it is unlikely that its truth or falsity could be definitely established
today.2 After our theory is developed, it will be of interest to see whether the present
restriction to Aristotelian propositions such asA can be relaxed, so that the robot might help
us also with more vague propositions such asB (see Chapter 18 on theAp-distribution).3

1.5 Boolean algebra

To state these ideas more formally, we introduce some notation of the usual symbolic logic,
or Boolean algebra, so called because George Boole (1854) introduced anotationsimilar
to the following. Of course, the principles of deductive logic itself were well understood
centuries before Boole, and, as we shall see, all the results that follow from Boolean al-
gebra were contained already as special cases in the rules of plausible inference given

2 Their meeting is a chronological possibility, since their lives overlapped by 24 years; my reason for doubting it is the failure of
Berlioz to mention any such meeting in his memoirs – on the other hand, neither does he come out and say definitely that they
did notmeet.

3 The question of how one is to make amachine in some sense ‘cognizant’ of the conceptual meaning that a proposition likeA has
to humans, might seem very difficult, and much of the subject of artificial intelligence is devoted to inventingad hocdevices to
deal with this problem. However, we shall find in Chapter 4 that for us the problem is almost nonexistent; our rules for plausible
reasoning automatically provide the means to do the mathematical equivalent of this.
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by (1812). The symbol

AB, (1.6)

called thelogical productor theconjunction, denotes the proposition ‘bothA andB are
true’. Obviously, the order in which we state them does not matter;AB andBA say the
same thing. The expression

A+ B, (1.7)

called thelogical sumor disjunction, stands for ‘at least one of the propositions,A, B is
true’ and has the same meaning asB + A. These symbols are only a shorthand way of
writing propositions, and do not stand for numerical values.
Given two propositionsA, B, it may happen that one is true if and only if the other is true;

we then say that they have the sametruth value. This may be only a simpletautology (i.e.
A andB are verbal statements which obviously say the same thing), or it may be that only
after immense mathematical labor is it finally proved thatA is the necessary and sufficient
condition for B. From the standpoint of logic it does not matter; once it is established,
by any means, thatA andB have the same truth value, then they are logically equivalent
propositions, in the sense that any evidence concerning the truth of one pertains equally
well to the truth of the other, and they have the same implications for any further reasoning.
Evidently, then, it must be the most primitive axiom of plausible reasoning that two

propositions with the same truth value are equally plausible. This might appear almost too
trivial to mention, were it not for the fact that Boole himself (Boole, 1854, p. 286) fell into
error on this point, bymistakenly identifying two propositionswhichwere in fact different –
and then failing to see any contradictionin their different plausibilities. Three years later,
Boole (1857) gave a revised theory which supersedes that in his earlier book; for further
comments on this incident, see Keynes (1921, pp. 167–168); Jaynes (1976, pp. 240–242).
In Boolean algebra, the equal sign is used to denote not equal numerical value, but equal

truth value:A = B, and the ‘equations’ of Boolean algebra thus consist of assertions that
the proposition on the left-hand side has the same truth value as the one on the right-hand
side. The symbol ‘≡’ means, as usual, ‘equals by definition’.
In denoting complicated propositions we use parentheses in the same way as in ordinary

algebra, i.e. to indicate the order in which propositions are to be combined(at timeswe shall
use them also merely for clarity of expression although they are not strictly necessary). In
their absence we observe the rules of algebraic hierarchy, familiar to those who use hand
calculators: thusAB+ C denotes (AB) + C; and notA(B + C).

Thedenialof a proposition is indicated by a bar:

A ≡ A is false. (1.8)

The relation betweenA, A is a reciprocal one:

A = A is false, (1.9)
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and it does not matter which proposition we denote by the barred and which by the unbarred
letter. Note that some care is needed in the unambiguous use of the bar. For example,
according to the above conventions,

AB = AB is false; (1.10)

A B = bothA andB are false. (1.11)

These are quite different propositions; in fact,AB is not the logical productA B, but the
logical sum:AB = A+ B.

With these understandings, Boolean algebra is characterized by some rather trivial and
obvious basic identities, which express the properties of:

Idempotence:

{
AA= A

A+ A = A

Commutativity:

{
AB = BA

A+ B = B + A

Associativity:

{
A(BC) = (AB)C = ABC

A+ (B + C) = (A+ B) + C = A+ B + C

Distributivity:

{
A(B + C) = AB+ AC

A+ (BC) = (A+ B)(A+ C)

Duality:

{
If C = AB, thenC = A+ B

If D = A+ B, thenD = A B

(1.12)

but by their application one can prove any number of further relations, some highly non-
trivial. For example, we shall presently have use for the rather elementary theorem:

if B = AD thenA B = B andB A = A. (1.13)

Implication

The proposition

A ⇒ B (1.14)

to be read as ‘A impliesB’, does not assert that eitherA or B is true; it means only thatA B
is false, or, what is the same thing, (A+ B) is true. This can be written also as the logical
equationA = AB. That is, given (1.14), ifA is true thenB must be true; or, ifB is false
thenAmust be false. This is just what is stated in the strong syllogisms (1.1) and (1.2).
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On the other hand, ifA is false, (1.14) says nothing aboutB: and ifB is true, (1.14) says
nothing aboutA. But these are just the cases in which our weak syllogisms (1.3), (1.4) do
say something. In one respect, then, the term ‘weak syllogism’ is misleading. The theory
of plausible reasoning based on weak syllogisms is not a ‘weakened’ form of logic; it is
anextensionof logic with new content not present at all in conventional deductive logic. It
will become clear in the next chapter (see (2.69) and (2.70)) that our rules include deductive
logic as a special case.

A tricky point

Note carefully that in ordinary language one would take ‘A implies B’ to mean thatB
is logically deducible fromA. But, in formal logic, ‘A implies B’ means only that the
propositionsA and AB have the same truth value. In general, whetherB is logically
deducible fromA does not depend only on the propositionsA andB; it depends on the
totality of propositions (A, A′, A′′, . . .) that we accept as true and which are therefore
available to use in the deduction.Devinatz (1968, p. 3) and Hamilton (1988, p. 5) give the
truth table for the implication as a binary operation, illustrating thatA ⇒ B is false only if
A is true andB is false; in all other casesA ⇒ B is true!
This may seem startling at first glance; however, notethat, indeed, ifA andB are both

true, thenA = AB and soA ⇒ B is true; in formal logic every true statement implies
every other true statement. On the other hand, ifA is false, thenAQ is also false for all
Q, thusA = AB andA = AB are both true, soA ⇒ B andA ⇒ B are both true; a false
proposition implies all propositions. If we tried to interpret this as logical deducibility
(i.e. bothB andB are deducible fromA), it would follow that every false proposition is
logically contradictory. Yet the proposition: ‘Beethoven outlived Berlioz’ is false but hardly
logically contradictory (for Beethoven did outlive many people who were the same age as
Berlioz).
Obviously, merely knowing that propositionsA andB are both true does not provide

enough information to decide whether either is logically deducible from the other, plus
some unspecified ‘toolbox’ of other propositions. The question of logical deducibility of
one proposition from a set of others arises in a crucial way in theG¨odel theoremdiscussed at
the end of Chapter 2. This great difference in the meaning of the word ‘implies’ in ordinary
language and in formal logic is a tricky point that can lead to serious error if it is not properly
understood; it appears to us that ‘implication’ is an unfortunate choice of word, and that
this is not sufficiently emphasized in conventional expositions of logic.

1.6 Adequate sets of operations

We note some features of deductive logic which will be needed in the design of our robot.
We have defined four operations, or ‘connectives’, by which, starting from two propositions
A, B, other propositions may be defined: the logical product or conjunctionAB, the logical
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sum or disjunctionA+ B, the implicationA ⇒ B, and the negationA. By combining
these operations repeatedly in every possible way, one can generate any number of new
propositions, such as

C ≡ (A+ B)(A+ A B) + A B(A+ B). (1.15)

Many questions then occur to us: How large is the class of new propositions thus generated?
Is it infinite, or is thereafinite set that is closedunder theseoperations?Caneveryproposition
defined fromA, B be thus represented, or does this require further connectives beyond the
above four? Or are these four already overcomplete so that some might be dispensed with?
What is the smallest set of operations that is adequate to generate all such ‘logic functions’
of A and B? If instead of two starting propositionsA, B we have an arbitrary number
{A1, . . . , An}, is this set of operationsstill adequate to generate all possible logic functions
of {A1, . . . , An}?

All these questions are answered easily, with results useful for logic, probability theory,
and computer design. Broadly speaking, we are asking whether, starting from our present
vantage point, we can (1) increase the number of functions, (2) decrease the number of
operations. The first query is simplified by noting that two propositions, although they may
appear entirely differentwhenwritten out in themanner (1.15), are not different propositions
from the standpoint of logic if they have the same truth value. For example, it is left for
the reader to verify thatC in (1.15) is logically the same statement as the implication
C = (B ⇒ A).

Since we are, at this stage, restricting our attention to Aristotelian propositions, any logic
functionC = f (A, B) such as (1.15) has only two possible ‘values’, true and false; and
likewise the ‘independent variables’A andB can take ononly those two values.

At this point, a logician might object to our notation, saying that the symbolA has
been defined as standing for some fixed proposition, whose truth cannot change; so if we
wish to consider logic functions, then instead of writingC = f (A, B) we should introduce
new symbols and writez= f (x, y), wherex, y, z, are ‘statement variables’ for which
various specific statementsA, B,C may be substituted. But ifA stands for some fixed but
unspecifiedproposition, then it canstill beeither trueor false.Weachieve thesameflexibility
merely by the understanding that equations like (1.15) which define logic functions are to
be true for all ways of definingA, B ; i.e. instead of a statement variable we use a variable
statement.
In relations of the formC = f (A, B), we are concerned with logic functions defined

on a discrete ‘space’ S consisting of only 22 = 4 points; namely those at whichA and
B take on the ‘values’{TT,TF,FT,FF}, respectively; and, at each point, the function
f (A, B) can take on independently either of two values{T,F}. There are, therefore, exactly
24 = 16 different logic functionsf (A, B), and nomore. An expressionB = f (A1, . . . , An)
involving n propositions is a logic function on a space S ofM = 2n points; and there are
exactly 2M such functions.
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In the casen = 1, there are four logic functions{ f1(A), . . . , f4(A)}, which we can define
by enumeration, listing all their possible values in a truth table:

A T F

f1(A) T T
f2(A) T F
f3(A) F T
f4(A) F F

But it is obvious by inspection that these are just

f1(A) = A+ A

f2(A) = A

f3(A) = A

f4(A) = A A,

(1.16)

soweprove by enumeration that the three operations: conjunction, disjunction, and negation
are adequate to generate all logic functions of a single proposition.
For the case of generaln, consider first the special functions, each of which is true at one

and only one point of S. Forn = 2 there are 2n = 4 such functions,

A, B TT TF FT FF

f1(A, B) T F F F
f2(A, B) F T F F
f3(A, B) F F T F
f4(A, B) F F F T

It is clear by inspection that these are just the four basic conjunctions,

f1(A, B) = A B

f2(A, B) = A B

f3(A, B) = A B

f4(A, B) = A B.

(1.17)

Consider now any logic function which is true on certain specified points of S; for example,
f5(A, B) and f6(A, B), defined by

A, B TT TF FT FF

f5(A, B) F T F T
f6(A, B) T F T T
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We assert that each of these functions is the logical sum of the conjunctions (1.17) that are
true on the same points (this is not trivial; the reader should verify it in detail). Thus,

f5(A, B) = f2(A, B) + f4(A, B)

= A B + A B

= (A+ A) B

= B,

(1.18)

and, likewise,

f6(A, B) = f1(A, B) + f3(A, B) + f4(A, B)

= AB+ A B+ A B

= B + A B

= A+ B.

(1.19)

That is, f6(A, B) is the implication f6(A, B) = (A ⇒ B), with the truth table discussed
above. Any logic functionf (A, B) that is true on at least one point of S can be constructed in
this way as a logical sum of the basic conjunctions (1.17). There are 24 − 1 = 15 such func-
tions. For the remainingfunction, which is always false, it suffices to take the contradiction,
f16(A, B) ≡ A A.
This method (called ‘reduction todisjunctive normal form’ in logic textbooks) will work

for anyn. For example, in the casen = 5 there are 25 = 32 basic conjunctions,

{ABCDE, ABCDE, ABCDE, . . . , A BC D E}, (1.20)

and232 = 4294967296different logic functionsfi (A, B,C, D, E); ofwhich4294967295
can be written as logical sums of the basic conjunctions, leaving only the contradiction

f4294967296(A, B,C, D, E) = A A. (1.21)

Thus one can verify by ‘construction in thought’ that the three operations

{conjunction, disjunction, negation}, i.e. {AND, OR, NOT}, (1.22)

suffice to generate all possible logic functions; or, more concisely, they form an
adequate set.
The duality property (1.12) shows that a smaller set will suffice; for disjunction ofA, B

is the same as denying that they are both false:

A+ B = (A B). (1.23)

Therefore, the two operations (AND, NOT) already constitute an adequate set for deductive
logic.4 This fact will be essential in determining when we have an adequate set of rules for
plausible reasoning; see Chapter 2.

4 For you to ponder: Does it follow that these two commands are the only ones needed to write any computer program?



16 Part 1 Principles and elementary applications

It is clear that we cannot now strike out either of these operations, leaving only the
other; i.e. the operation ‘AND’ cannot be reduced to negations; and negation cannot be
accomplished by any number of ‘AND’ operations. But this still leaves open the possibility
that both conjunction and negation might be reducible to some third operation, not yet
introduced, so that a single logic operation would constitute an adequate set.
It comes as a pleasant surprise to find that there is not only one but two such operations.

The operation ‘NAND’ is defined as the negation of ‘AND’:

A ↑ B ≡ AB = A+ B (1.24)

which we can read as ‘ANAND B’. But then we have at once

A = A ↑ A

AB = (A ↑ B) ↑ (A ↑ B)

A+ B = (A ↑ A) ↑ (B ↑ B).

(1.25)

Therefore, every logic function can be constructed with NAND alone. Likewise, the
operation NOR defined by

A ↓ B ≡ A+ B = A B (1.26)

is also powerful enough to generate all logic functions:

A = A ↓ A

A+ B = (A ↓ B) ↓ (A ↓ B)

AB = (A ↓ A) ↓ (B ↓ B).

(1.27)

One can take advantage of this in designing computer and logic circuits. A‘logic gate’ is a
circuit having, besides a common ground, two input terminals and one output. The voltage
relative to ground at any of these terminals can take on only two values; say+3 volts, or
‘up’, representing ‘true’; and 0 volts or ‘down’, representing ‘false’. A NAND gate is thus
one whose output is up if and only if at least one of the inputs is down; or, what is the same
thing, down if and only if both inputs are up; while for a NOR gate the output is upif and
only if both inputs are down.
One of the standard components of logic circuits is the ‘quad NAND gate’, an integrated

circuit containing four independent NAND gates on one semiconductor chip. Given a suffi-
cient number of these and no other circuit components, it is possible to generate any required
logic function by interconnecting them in various ways.
This short excursion into deductive logic is as far as we need go for our purposes. Further

developments are given inmany textbooks; for example, amodern treatment of Aristotelian
logic is given by Copi (1994). For non-Aristotelian forms with special emphasis on G¨odel
incompleteness, computability, decidability, Turing machines, etc., see Hamilton (1988).
We turn now to our extension of logic, which is to follow from the conditions discussed

next.We call them ‘desiderata’ rather than ‘axioms’ because they do not assert that anything
is ‘true’ but only state what appear to be desirable goals. Whether these goals are attainable
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without contradictions, and whether they determine any unique extension of logic, are
matters of mathematical analysis, given in Chapter 2.

1.7 The basic desiderata

To each proposition about which it reasons, our robot must assign some degree of plausi-
bility, based on the evidence we have given it; and whenever it receives new evidence it
must revise these assignments to take that new evidence into account. In order that these
plausibility assignments can be stored and modified in the circuits of its brain, they must
be associated with some definite physical quantity, such as voltage or pulse duration or a
binary coded number, etc. – however our engineers want to design the details. For present
purposes, this means that there will have to be some kind of association between degrees
of plausibility and real numbers:

(I) Degrees of plausibility are represented by real numbers. (1.28)

Desideratum (I) is practically forced on us by the requirement that the robot’s brain must
operate by the carrying out of some definite physical process. However, it will appear
(Appendix A) that it is also required theoretically; we do not see the possibility of any
consistent theory without a property that is equivalent functionally to desideratum (I).
Weadopt anatural but nonessential convention: that agreater plausibility shall correspond

to a greater number. It will also be convenient to assume a continuity property, which is hard
to state precisely at this stage; to say it intuitively: an infinitesimally greater plausibility
ought to correspond only to an infinitesimally greater number.
The plausibility that the robot assigns to some propositionAwill, in general, depend on

whether we told it that some other propositionB is true. Following the notation of Keynes
(1921) and Cox (1961), we indicate this by the symbol

A|B, (1.29)

which we may call ‘the conditional plausibility thatA is true, given thatB is true’ or just
‘ A givenB’. It stands for some real number. Thus, for example,

A|BC (1.30)

(which we may read as ‘A givenBC’) represents the plausibility thatA is true, given that
bothB andC are true. Or,

A+ B|CD (1.31)

represents the plausibility that at least one of the propositionsA andB is true, given that
bothC andD are true; and so on. We have decided to represent a greater plausibility by a
greater number, so

(A|B) > (C|B) (1.32)
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says that, givenB, A is more plausible thanC. In this notation, while the symbol for
plausibility is just of the formA|B without parentheses, we often add parentheses for
clarity of expression. Thus, (1.32) says the same thing as

A|B > C|B, (1.33)

but its meaning is clearer to the eye.
In the interest of avoiding impossible problems, we are not going to ask our robot to

undergo the agony of reasoning from impossible or mutually contradictory premises; there
could be no ‘correct’ answer. Thus, we make no attempt to defineA|BCwhenB andC are
mutually contradictory. Whenever such a symbol appears, it is understood thatB andC are
compatible propositions.
Also, we do not want this robot to think in a way that is directly opposed to the way you

and I think. So we shall design it to reason in a way that is at leastqualitativelylike the way
humans try to reason, as described by the above weak syllogisms and a number of other
similar ones.
Thus, if it hasold informationCwhichgetsupdated toC′ in suchaway that theplausibility

for A is increased:

(A|C′) > (A|C); (1.34)

but the plausibility forB givenA is not changed:

(B|AC′) = (B|AC). (1.35)

This can, of course, produce only an increase, never a decrease, in the plausibility that both
A andB are true:

(AB|C′) ≥ (AB|C); (1.36)

and it must produce a decrease in the plausibility thatA is false:

(A|C′) < (A|C). (1.37)

This qualitative requirement simply gives the ‘sense of direction’ in which the robot’s
reasoning is to go; it says nothing abouthow muchthe plausibilities change, except that
our continuity assumption (which is also a condition for qualitative correspondence with
common sense) now requires that ifA|C changes only infinitesimally, it can induce only an
infinitesimal change inAB|C andA|C. The specific ways in which we use these qualitative
requirements will be given in the next chapter, at the point where it is seen why we need
them. For the present we summarize them simply as:

(II) Qualitative correspondence with common sense. (1.38)

Finally, we want to give our robot another desirable property for which honest people strive
without always attaining: that it always reasonsconsistently. By this we mean just the three
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common colloquial meanings of the word ‘consistent’:

(IIIa)
If a conclusion can be reasoned out in more than one way, then
every possible way must lead to the same result.

(1.39a)

(IIIb)

The robot always takes into account all of the evidence it has
relevant to a question. It does not arbitrarily ignore some of
the information, basing its conclusions only on what remains.
In other words, the robot is completely nonideological.

(1.39b)

(IIIc)

The robot always represents equivalent states of knowledge by
equivalent plausibility assignments. That is, if in two problems
the robot’s state of knowledge is the same (except perhaps for
the labeling of the propositions), then it must assign the same
plausibilities in both.

(1.39c)

Desiderata (I), (II), and (IIIa) are the basic ‘structural’ requirements on the inner workings
of our robot’s brain, while (IIIb) and(IIIc) are ‘interface’ conditions which show how the
robot’s behavior should relate to the outer world.
At this point,most students are surprised to learn that our search for desiderata is at an end.

The above conditions, it turnsout, uniquely determine the rules by which our robot must
reason; i.e. there is only one set of mathematical operations for manipulating plausibilities
which has all these properties. These rules are deduced in Chapter 2.

(At the end of most chapters, we insert a sectionof informal Comments in whichare
collected various side remarks, backgroundmaterial, etc. The readermay skip themwithout
losing the main thread of the argument.)

1.8 Comments

As politicians, advertisers, salesmen, and propagandists for various political, economic,
moral, religious, psychic, environmental, dietary, and artistic doctrinaire positions know
only too well, fallible human minds are easily tricked, by clever verbiage, into committing
violations of the above desiderata. We shall try to ensure that they do not succeed with our
robot.
We emphasize another contrast between the robot and a human brain. By Desideratum

I, the robot’s mental state about any proposition is to be represented by a real number.
Now, it is clear that our attitude toward any given proposition may have more than one
‘coordinate’. You and I form simultaneous judgments about a proposition not only as to
whether it is plausible, but also whether it is desirable, whether it is important, whether it
is useful, whether it is interesting, whether it is amusing, whether it is morally right, etc.
If we assume that each of these judgments might be represented by a number, then a fully
adequate description of a human state of mind would be represented by a vector in a space
of a rather large number of dimensions.
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Not all propositions require this. For example, the proposition ‘The refractive index of
water is less than 1.3’ generates no emotions; consequently the state of mind which it
produces has very few coordinates. On the other hand, the proposition, ‘Your mother-in-
law just wrecked your new car’ generates a state of mind with many coordinates. Quite
generally, the situations of everyday life are those involving many coordinates. It is just for
this reason, we suggest, that the most familiar examples of mental activity are often the
most difficult to reproduce by a model. Perhaps we have here the reason why science and
mathematics are the most successful of human activities: they deal with propositions which
produce the simplest of all mental states. Such states would be the ones least perturbed by
a given amount of imperfection in the human mind.
Of course, for many purposes we would not want our robot to adopt any of these more

‘human’ features arising from the other coordinates. It is just the fact that computers donot
get confused by emotional factors, donotget bored with a lengthy problem, donotpursue
hidden motives opposed to ours, that makes them safer agents than men for carrying out
certain tasks.
These remarks are interjected to point out that there is a large unexplored area of possible

generalizations and extensions of the theory to be developed here; perhaps this may inspire
others to try their hand at developing ‘multidimensional theories’ of mental activity, which
would more and more resemble the behavior of actual human brains – not all of which
is undesirable. Such a theory, if successful, might have an importance beyond our present
ability to imagine.5

For the present, however, we shall have to be content with amuchmoremodest undertak-
ing. Is it possible to develop a consistent ‘one-dimensional’ model of plausible reasoning?
Evidently, our problemwill be simplest if wecanmanage to represent adegreeof plausibility
uniquely by a single real number, and ignore the other ‘coordinates’ just mentioned.
We stress that we are in no way asserting that degrees of plausibility in actual human

minds have a unique numericalmeasure. Our job is not to postulate – or indeed to conjecture
about – any such thing; it is toinvestigatewhether it is possible, in our robot, to set up such
a correspondence without contradictions.
But to some it may appear that we have already assumed more than is necessary, thereby

puttinggratuitous restrictionson thegeneralityof our theory.Whymustwe representdegrees
of plausibility by real numbers? Would not a ‘comparative’ theory based on a system of
qualitative ordering relations suchas (A|C) > (B|C) suffice? This point is discussed further
inAppendixA,wherewedescribe other approaches to probability theory and note that some
attempts have been made to develop comparative theories which it was thought would be
logically simpler, or more general. But this turned out not to be the case; so, although it is
quite possible to develop the foundations in other ways than ours, the final results will not
be different.

5 Indeed, some psychologists think that as few as five dimensions might suffice to characterize a human personality; that is, that
we all differ only in having different mixes of five basic personality traits which may be genetically determined. But it seems to
us that this must be grossly oversimplified; identifiable chemical factors continuously varying in both space and time (such as
the distribution of glucose metabolism in the brain) affect mental activity but cannot be represented faithfully in a space of only
five dimensions. Yet it may be that five numbers can capture enough of the truth to be useful for many purposes.
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1.8.1 Common language vs. formal logic

We should note the distinction between the statements of formal logic and those of ordinary
language. It might be thought that the latter is only a less precise form of expression; but on
examination of details the relation appears different. It appears to us that ordinary language,
carefully used, need not be less precise than formal logic; but ordinary language is more
complicated in its rules and has consequently richer possibilities of expression than we
allow ourselves in formal logic.
In particular, common language, being in constant use for other purposes than logic, has

developed subtle nuances – means of implying something without actually stating it – that
are lost on formal logic. Mr A, to affirm his objectivity, says, ‘I believe what I see.’ Mr B
retorts: ‘He doesn’t see what he doesn’t believe.’ From the standpoint of formal logic, it
appears that they have said the same thing; yet from the standpoint of common language,
those statements had the intent and effect of conveying opposite meanings.
Here is a less trivial example, taken from amathematics textbook. Let L be a straight line

in a plane, and S an infinite set of points in that plane, each of which is projected onto L.
Now consider the following statements:

(I) The projection of the limit is the limit of the projections.
(II) The limit of the projections is the projection of the limit.

These have the grammatical structures ‘A is B’ and ‘B is A’, and so they might appear
logically equivalent. Yet in that textbook, (I) was held to be true, and (II) not true in general,
on the grounds that the limit of the projections may exist when the limit of the set does not.
As we see from this, in common language – even in mathematics textbooks – we have

learned to readsubtle nuancesofmeaning into theexact phrasing, probablywithout realizing
it until an example like this is pointed out. We interpret ‘A is B’ as asserting first of all,
as a kind of major premise, thatA exists; and the rest of the statement is understood to
be conditional on that premise. Put differently, in common grammar the verb ‘is’ implies
a distinction between subject and object, which the symbol ‘=’ does not have in formal
logic or in conventional mathematics. (However, in computer languages we encounter such
statements as ‘J= J+ 1’, which everybody seems to understand, but in which the ‘=’ sign
has now acquired that implied distinction after all.)
Another amusing example is the old adage ‘knowledge is power’, which is a very cogent

truth, both in human relations and in thermodynamics. An ad writer for a chemical trade
journal6 fouled this up into ‘power is knowledge’, an absurd – indeed, obscene – falsity.

These examples remind us that the verb ‘is’ has, like any other verb, a subject and a
predicate; but it is seldom noted that this verb has two entirely different meanings. A person
whose native language is English may require some effort to see the different meanings in
the statements: ‘The room is noisy’ and ‘There is noise in the room’. But in Turkish these
meanings are rendered by different words, whichmakes the distinction so clear that a visitor

6 LC-CG Magazine, March 1988, p. 211.
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who uses the wrong word will not be understood. The latter statement is ontological, assert-
ing the physical existence of something, while the former is epistemological, expressing
only the speaker’s personal perception.
Common language – or, at least, the English language – has an almost universal tendency

to disguise epistemological statements by putting them into a grammatical form which sug-
gests to the unwary an ontological statement. A major source of error in current probability
theory arises from an unthinking failure to perceive this. To interpret the first kind of state-
ment in the ontological sense is to assert that one’s own private thoughts and sensations are
realities existing externally in Nature. We call this the ‘mind projection fallacy’, and note
the trouble it causesmany times in what follows. But this trouble is hardly confined to prob-
ability theory; as soon as it is pointed out, it becomes evident that much of the discourse of
philosophers and Gestalt psychologists, and the attempts of physicists to explain quantum
theory, are reduced to nonsense by the author falling repeatedly into the mind projection
fallacy.
These examples illustrate the care thatis needed when we try to translate the complex

statements of common language into the simpler statements of formal logic. Of course,
common language is often less precise than we should want in formal logic. But everybody
expects this and is on the lookout for it, so it is less dangerous.
It is too much to expect that our robot will grasp all the subtle nuances of common

language, which a human spends perhaps 20 years acquiring. In this respect, our robot will
remain like a small child – it interprets all statements literally and blurts out the truthwithout
thought of whom this may offend.
It is unclear to the writer how difficult – and even less clear how desirable – it would be

to design a newer model robot with the ability to recognize these finer shades of meaning.
Of course, the question of principle is disposed of at once by the existence of the human
brain, which does this. But, in practice, von Neumann’s principle applies; a robot designed
by us cannot do it until someone develops a theory of ‘nuance recognition’, which reduces
the process to a definitely prescribed set of operations. This we gladly leave to others.
In any event, our present model robot is quite literally real, because today it is almost

universally true that any nontrivial probability evaluation is performed by a computer. The
person who programmed that computer was necessarily, whether or not they thought of it
that way, designing part of the brain of a robot according to some preconceived notion of
how the robot should behave. But very few of the computer programs now in use satisfy all
our desiderata; indeed, most are intuitivead hocprocedures that were not chosen with any
well-defined desiderata at all in mind.
Any such adhockery is presumably usable within some special area of application –

that was the criterion for choosing it – but as the proofs of Chapter 2 will show, any
adhockery which conflicts with the rules of probability theory must generate demonstrable
inconsistencies when we try to apply it beyond some restricted area. Our aim is to avoid
this by developing the general principles of inference once and for all, directly from the
requirement of consistency, and in a form applicable to any problem of plausible inference
that is formulated in a sufficiently unambiguous way.




