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. to such discontented pendulums as we are.
Ralph Waldo Emerson

Neurons, or nerve cells, control most biological rhythms through various tim-
ing mechanisms. Among these rhythms are body temperature and rest/activity
behavior, but there is also significant modulation of timers due to external
physical cues such as light/dark cycles and variations in ambient temperatures.
Biological timers act on time scales ranging from milliseconds to months, and
experiments on them range in size from microelectrode recordings to observa-
tions in underground laboratories that are used to study daily human rhythms
over periods of months.

This book introduces some modeling techniques that are useful for studying
rhythms and timing from the level of neurons to higher levels in the brain, and
it focuses on the behavior of neurons and networks of them in the frequency
domain. Although much of this material is based on the earlier work of many
people who studied biological rhythms, including the first edition of this book
published in 1986, much of it is new, reflecting knowledge about the brain that
has been created in the past ten years [2,3]. For example, the study of networks
has matured during this period, and we include new material on large networks.
In addition, increases in knowledge about the brain and its subsystems make it
possible to include here some special studies of attention, vision, and audition.

This second edition keeps to the same format as in the first, and it continues
to focus on modeling in the frequency domain through the use of a particular
model, the VCON (Voltage Controlled Oscillator Neuron) model. The VCON
model was originally derived as being a good model for teaching and studying
the phenomenon of phase locking in biological systems, but the mathematical
model for it is quite similar to models that have proved to be useful in other

Xiii
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settings:

e It appears as the canonical model for a general network near a multiple
saddle-node on a limit cycle (SNLC) bifurcation.

e It occurs in describing emergence patterns of periodical cicadas [66].

e It arises as the model for a mechanical pendulum operating in an oscillatory
or random environment [116, 135].

e It is used to describe nonlinear phenomena in power systems [73, 115].

e It arises as the model of a basic circuit used in communications theory (the
phase-locked loop) [94].

e It is used to describe quantum mechanical aspects of superconductors, for
example, Josephson junctions [91, 44].

In each of these cases, a mathematical model of a physical phenomenon is
converted into phase and amplitude coordinates, and the model is analyzed
using frequency-based methods of Fourier analysis and averaging.

Our goal here is to study the frequency and timing of neuron firing and how
these can interact in networks to carry information and to control biological
systems. We study the flow of information in large networks using methods
similar to those used to study the flow of information in large telecommunica-
tions networks and the flow of alternating current electricity in power systems.

To study problems in the frequency domain, we work with angle (or phase)
variables, and a common stumbling block for people entering this area is the
question “What does the phase represent?” The following example might help
get around this. Consider a one-handed stopwatch. Time is described by the
hand’s location, say whose tip has coordinates (cos 277z /60, sin 2t /60) and ¢
is usual time measured in seconds, relative to markings on the circumference.
We can describe this timer by writing the location of the tip of the hand as being

(cos (), sin O(¢))

and describing how the phase variable # changes with ¢. In this case, 8 is the
solution of the differential equation

2
=
In this way, we have moved the problem from the domain of physical vari-
ables (the position of the hand in this case) to the frequency domain (9). Not
much has apparently been gained by doing this. However, now consider a more
complicated stopwatch where the markings around the edge are uneven to re-
flect systematic or random errors in the timer. This can be described using the

4
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original model but now the equation for 6 must account for uneven progress of
time on this clock, say

. 2
9:66+f(9)’

where f(6) > O describes when the stopwatch time is moving faster than
real time and f(0) < O describes when it moves slower than real time. Thus,
the timing is modulated, and the modulation is conveniently described using a
single equation for 9.

As another example, a voltage pulse might be described by a quite compli-
cated function of time, say

V),

describing an action potential at a site on a nerve membrane. The voltage V
lies in some interval, say

Vmin =< V(t) = Vmax-

Such a function can frequently be described by a fixed (simpler) wave form
having a variable phase. In these cases, a phase variable 8 can be defined by

cos8(t) = (V(t) — V)/a,

where V is the mean of V;

‘—/ — Vmax + Vmin ’
2
and o measures its range:
Vmax - Vmin
o =——".
2

The variable 6 is a phase variable in the sense that it measures the extent of
development of the signal, V. Typically, 0 satisfies a differential equation that
can be derived from the one for the physical variable V.

Phase variables in our applications eventually converge to the form

0 — wt+ ¢,

where we call w the frequency and ¢ the phase deviation of the signal. We will
find that as in FM-radio, w is like an address (on the radio dial) and ¢ carries
timing information. Both @ and ¢ carry information. In high-dimensional cases
(where w, ¢, etc. are vectors) such solutions form knots on a high-dimensional
torus that phase locking shows will persist in the presence of noise [54].
Another important point of view presented and used here is that of bifurca-
tions. Bifurcations often occur in systems and are observable in experiments.
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These are circumstances where slight changes in data or state can result in
dramatic changes in system behavior.

If asystem is operating in a hyperbolic manner (there are no imaginary eigen-
values for relevant linearizations), then small changes in the system should not
cause major disruptions in its behavior. In contrast, if some eigenvalues are
near the imaginary axis, then a small change in the system’s state or in the
parameters describing it can result in dramatic changes in a network’s behav-
ior. Bifurcations can occur in many ways, but one of the more complicated
elementary bifurcations to study is the fold bifurcation since it requires one
to have nonlocal knowledge of the system. VCON models are quite useful for
studying systems near such bifurcations since they are constructed on the basis
of a saddle-node bifurcation near a limit cycle; consequently, they simultane-
ously capture a fold bifurcation and tractable nonlocal behavior. For example,
consider the equation

0 = w+ cosé.

When0<w < 1,0 - cos”'wast — oo.But,ifw > 1,0 — oo. If we are
reading output of the system as a periodic function of 6, then the output stabilizes
in the first case, and it oscillates in the second. This switch in the system’s
behavior from stable to oscillatory results from the saddle-node bifurcation that
occurs when w increases through the value w = 1.

Phase locking is important in electrical and mechanical systems [135]. Tt
enables a system to provide a stable output even in the presence of significant
levels of noise. Phase locking has also been found to occur in neural tissue
{43, 46, 49, 5, 59, 60, 92, 87], and descriptions and analysis of phase locking
are done in the frequency domain.

The emphasis here is placed on frequency and phase-deviation informa-
tion of neurons. This is done by deriving a model in the frequency domain
for the hillock region of a nerve cell where voltage pulses (action potentials)
are triggered. Time delays in propagation of signals along membranes, across
synapses, through dendritic trees and in cell bodies are modeled by including
appropriate filters in the circuits. It is intriguing that frequency and timing of
action potentials can result in the storage of information and in physiological
and psychological responses of the system, and there remain many interesting
and untouched aspects of this kind of information storage and retrieval and
processing by neural networks.

How general is this approach using VCONs? Any model of a neuron or a
network of them using dynamical systems will have the form

X = Fi(x), 0.1)

where i € 1, N (where N is a large number) describes the addresses of all
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elements in the network, and the vectors x;, F; € E™ describe the dynamics
of each circuit element and the impact of all other elements on it.

This system can change from static to oscillatory behavior in two simple
(codimension = 1) ways: Either through a saddle-node on a limit cycle (SNLC)
bifurcation or through a Hopf bifurcation. Both of these are observed in neu-
roscience experiments. There are many other ways that this can happen, but
they involve more constraints (higher codimension) and in that sense are less
likely [58]. In the SNLC case, there is an invariant limit cycle that is homeo-
morphic to a circle, say x = C(s) where s € 0, 27 such that |C'(s)|? > O for all
5,G(s) = C'(s) - F(C(s))/|C'(s))? satisfies G(0) = G'(0) = 0, G"(0) > 0 and
G(s) > O for 0 < s < 2x. In addition, N — 1 of the eigenvalues of F,(C(s))
have nonzero real parts for each s € 0, 2. Then the system restricted to C is
simply § = G(s), and its canonical model is & = w + cos # for w near 1 in the
sense that there is a smooth invertible function 4 : S' — S! such that for any
solution for s, there is a solution for 8 such that s(¢) = A(6(¢)). The equation
for 8 here is the core of the VCON models.

The Hopf bifurcation case is studied elsewhere. It is not studied in depth
here because phase locking methods for it require more technical mathematics
to derive than our approach here.

We focus here on VCONs and networks of them to gain insight to how such
systems, in particular ones that encounter saddle-node bifurcations, can process
information.

The first chapter introduces elementary circuit theory and some of its math-
ematics. Particularly important in this chapter is the introduction of voltage-
controlled oscillators (VCOs) and some elementary circuits that use them.
VCOs are the central devices in our frequency-based neuron theory developed
in later chapters.

Chapter 2 discusses some mathematical aspects of clocks. In particular, it is
shown that VCO circuits are quite similar to simple clocks, which have helped
our understanding of biological rhythms. Phase-resetting experiments are also
described in Chapter 2. Finally, it is shown how simple clocks are related to
neurons. This chapter is intended to introduce ideas of modeling and analysis
in the frequency domain.

The third chapter describes the physiology of neurons and some electrical
circuit analogs of them. Among the latter are the Hodgkin—Huxley model, the
FitzHugh—Nagumo model, and some simplifications of them. These represent
the traditional approach to neuron modeling. The VCON is also introduced in
Chapter 3.

The VCON model is quite similar to relaxation oscillation models of neu-
ron behavior but, unlike relaxation oscillators, it is surprisingly simple to study
since it accurately models phase aspects of the circuit while avoiding technical
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asymptotic approximations. For example, the most sophisticated model of neu-
rons to date involves variables that account for ionic currents and the opening
and closing of channels for them, but these are derived in terms of physical
quantities of voltage, current, and chemical concentrations. Study of such mod-
els for phase locking requires conversion of these variables, using mathematical
methods, to phase and amplitude variables, which may not be possible. On the
other hand, the model of a VCO is posed in phase variables from the start, by
design of some brilliant electrical engineers, to facilitate direct study without
use of technical mathematical transformations.

Chapter 4 deals with signal processing in phase-locked feedback circuits, and
it sets the scene for our later treatment of signal processing in neural networks.
Phase-locked loops (PLLs) are analyzed by using the rotation vector method. It
is shown in Chapter 4 that the VCON is a PLL, and the rotation vector method is
then applied to describing the stable response of a VCON to external oscillatory
forcing. This approach shows how to construct an energy-like function, the
minima of which correspond to the stable responses of the VCON.

Several examples of small neural networks are modeled and analyzed in
Chapter 5. Among these are a simple bursting pattern generator (the Atoll
model), the control of respiration during exercise, and the mechanisms of
rhythm splitting in crepuscular mammal activity. Numerical simulations and
the rotation vector method are used to determine phase-locking behavior within
these small networks.

Large neural networks are studied in Chapters 6 and 7. Chapter 6 describes
memory, phase changes, and synchronization in networks; Chapter 7 describes
certain networks in and near the neocortex. These networks respond to external
stimulation in a variety of interesting and complex ways. Energy surfaces have
been derived by others to clarify some responses of networks of On-Off neurons,
or Ising-like networks, and Chapter 6 describes some of their work. However,
we consider here more realistic problems where the equations we derive are
gradient-like fields for phase deviations between synchronized oscillators. This
associates with stable phase deviations a memory surface, or as we say here, a
mnemonic surface. The mnemonic surface approach allows us to interpret stable
firing patterns of parts of the brain as representing its short-term memory and
its behavioral response. VCON networks are very rich in stable firing patterns
and, although they are not as complicated as ionic current circuits, they clearly
show how firing frequencies within the network can store, recall, and process
phase information. Energy-like surfaces have been used by psychologists in
interesting ways: The work of Helmholtz, Freud, and Jung illustrates their
impact.

Chapter 7 is largely devoted to creating and studying networks that model
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parts of the neocortex and its collateral processes. We aim at the thalamic
searchlight, a paradigm for focusing attention, and at pattern formation and
wave propagation in the neocortex and the visual cortex.

The appendixes at the end of the book present certain methods of differen-
tial equations that I have found to be useful review for students with varying
backgrounds in mathematics and a brief summary of topics from bifurcation
theory that are relevant to this work. Recommended for further reading are
[11, 36,72, 92].

There have been a number of developments since publication of the first
edition of this book that bear directly on the present book. In fact, they constitute
the reasons for pursuing a second edition. The following list of items is now
folded into the present edition:

e The emphasis of this work on the frequency domain and the signal processing
methods developed here are highlighted and expressed in terminology that
is closer to common usage in the engineering literature.

e Additional material is included on how noise in signals affects the models
derived here. New material is included describing the works of Skorokhod,
Chetaev, Kuramoto, Wentzel, and Friedlin in the context of neuroscience.

e More work is included on both chemical and electrical synapses. For the
most part the analysis in the first edition was for electrical synapses only.

e New work is presented relating the approach taken in this book with the rest
of the neuroscience modeling literature, much of which has emerged since
the publication of the first edition. Our approach is through the frequency
domain, and new material is included that describes how ionic channel mod-
els can be converted for study in the frequency domain and how variables
in the frequency domain models are related to physiological variables. In
particular, we formulate the VCON model in terms of activity and phase
where activity is interpreted as being the firing rate of a cell and phase as
having (eventually) the form wt + ¢.

e Material on bifurcations is now included. The VCON model developed and
studied here turns out to be closely related to the canonical model of a fold
(or saddle-node) bifurcation. This connection between VCONSs and bifurca-
tions is interesting since most bifurcation phenomena, or phase changes in a
system, are detectable in experiments. Therefore, it is through connections
between bifurcations in the model and predicted phase changes in a network
that we can relate our model to possible experiments. Bifurcations involve
dimensionless parameters that should be accessible through experiments.

e There are numerous tantalizing connections between the VCON model
and models from quantum mechanics. This might be relevant to studies
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of consciousness that are now ongoing [107], and some of these similarities
are pointed out in the present edition.

e Several new simulations have been developed and carried out for neural
circuits using VCON methodologies. These include

— Attention networks in the thalamus-reticular complex region of the
brain.

— Shivering and flight governed by central pattern generators in moths.

— The development of mnemonic surfaces, that is, surfaces that describe
remembered states of a system.

— The dynamics of cortical columns. We derive and study the pencil model
in Chapter 7.

— The development of ocular dominance in the visual cortex of newborns.
This is modeled using synapse strengthening due to synchronous firing
of presynaptic and postsynaptic cells.

The work presented in this book is based on courses in mathematical model-
ing where this material has been used. It can do no more than provide a snapshot
of certain aspects of the brain in a research field that is creating masses of new
and useful material every day. The focus here is on mathematical modeling, and
thus this material should not be construed as being useful directly for clinical
purposes.
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